

ThE AJTOM MTIC COIL WINDER \& ELECTRICAL EQUIPMENT CO. LTD

Orders bearing Gwvernment Contract Numbers and Priverty Rating cin now be accepted for quiek delivery of the following two "Avo "Instruments:THE "AVO" TEST BRIDGE
A porkable self-contained to-cycles bridge of expe3tional accurscy and utility for direct measurement of all normal valces of condensers and resistances. Facilities also provided for condenser poper factor measurame its and laskage tests by the tashiag neon method, rosistance, capscity end largs inductance messurements agaiast arternal standarig. Whay Elso be used as a highly efficient ve/ve voltmetor incicatos tor measuroment of both mioco and rajio frequency voltapes.

An inexpensive, accurate modulated oscillator covering a continuous fundamental frequeney band from 95 Kc . to 40 Mc . A harmonic calibration extends the range to 80 Nc. A large clearly marked cadial is directly calibrated throughout, accuracy being within 1%. Erternally modulated, internally modulated, or R.F. signels obtainable at will. Calibrated double attenuator enables sigzal to be raried from a few microvolts to 50 millivolts, with a force output of 1 v . Self-contained, fully shieldsd.

The

TAYLOR A•C• BRIDGE

 MODEL IIOAThese instruments give quick and accurate measurements of Capacity and Resistance. There are six Capacity ranges covering from .00001 to 120 mfd . and the Power factor can also be measured on each range. Six Resistance ranges are available measuring from 1 ohm to 12 megohms. This bridge is A.C. mains operated and a leakage test is also available for detecting leaky paper or mica condensers. Price $£ 14$ 14s. Od. Please write for technical leaflet.
(1) RANGES OF CAPACITY
 Send your enquiries to :-

TAYLOR ELECTRICAL INSTRUMENTS LD.

419-424 MONTRȮSE AVE., SLOUGH, BUCKS.
Tel: Slough 21381 (4 lines) 'Grams: "Taylins'", Slough.

Whartedale

TYPE P

OUTPUT

 TRANSFORMERSProduction in recent years against Admiralty Contracts has set even higher standards to Wharfedale Components. From this both trade and public will henceforth benefit. The bulk of our production is now on Transformers for Tropical use. We regret that supplies for general sale are still very small.

PRICE LIST

| O.P. 3 | - | - | 3 | ratios | | - | - | $5 / 6$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Type P | - | 4 | . | with C.T. | - | $6 / 6$ | | |
| G.P. 8 | - | - | 8 | . | . | . | - | $9 / 6$ |

WHARFEDALE WIRELESS WORKS HUTCHINSOM LANE, BRIGHOU8E, YORK8.
-Phone: Brighouse 50
'Grams: WHARFDEL

Fear no more the heat o' the sun, nor the furious winter's rages . . . Cymbeline.

WE learned long ago that Power Wire Wound Resistors must be ready to face a hard life. They mustn't lie down or curl up under intense heat; or shiver and go all numb in

DUBILIER C우N bitter cold. They must keep on doing their job whatever the conditions. We were the first to give Power Wire Wound Resistors a reliable cement coat to protect them from the climate. Dubilier Resistors can take what's coming-even heavy overloads-and come back for more.

The name
 is
 Dubilier

STATIC TWO-DIMENSIONAL visual delineation of any recurrent law.
RELATIVE TIMING OF EVENTS and other comparative measurements with extreme accuracy.

PHOTOGRAPHIC RECORDING of transient phenomena.

SIMULTANEOUS INDICATION of two variables on a common time axis.

INDUSTRIAL INDICATING and TESTING afford Increasing scope for the Cathode Ray Tube as the only device with the above inherent features, of which the last is unique in the Cossor DOUBLE BEAM Tube.
The Model 339 Cossor Oscillograph thus equipped is invaluable on all problems of research, production or operational testing, when the effect examined is applied as a voltage. When recurrent the traces are studied visually and when transient are recorded photographically, using Model 427 camera.

 construction, and is made in various capacities up to 540 mmf . with tropical finish. It can be supplied with trimmers built in if required. The 2 Gang Frame is $23^{\prime \prime} \times 12_{3}^{3}:^{*} \times 21_{1} 0^{\prime \prime}$ over all.

——M.R: SUPPLIES

have the following nuperlor and brand new RADIO and Th COIRICAL EQUFITEAT haveck and avallable for immediate deapetch or collection. All pricea net aseh. VOLTAGE CRAYGDG TRAMgronMeng, $900 / 250$ F. to $100 / 110$ F. (and vico-verts). Fully ahielded, wha connteranalk terminal blocka and properly rated. 76 via.
 terminal papele, 8610 s . (owing to heary weisht and packing difioultien wo cannot dermitch the 650 va . model-we have 72 only).

 $18 / 6$.
BATTERY CBARGER8, for $200 / 250$ v. A.C. Motal rectined. In ritrong black cryitalline eteel cablnat, 0in. $\times 8 \mathrm{tm} \times 4 \mathrm{in}$, for will auppendon. gerew-in mating election and radial ewitch for voltage selection, 2,6 and 12 v., at full 1 amp., 88 171. 64 A.T.C. MigAL RFCILIEPS, D.C. delivery up to 12 v , at $1 /$ ampa., $12 / 6$. RLIDHG grivivavoit, 100 wtte. Fully enclomed, oonitantly rated. 10 ohma 3 ampe., 50 ohme $1.4 \mathrm{smp},{ }^{200}$ ohms 0.7 amp . Any one, 2bl- Aleo 172 ohm (giadod. Mas, 2 ampa; min, 0.07 amp. $82 / 6$. STAGS DTM INES, controllmg tialed load
 watte, $8817,64,1,800$ wathe, 88 Be. (Oarr. ohther $7 / 6$, plom $80 /-$ for retursbie

 $0 / 100$, $0 / 500$. Volth, $0 / 10,0 / 60,0 / 100$, 0/500. Ohme $0 / 5,000$. Oomplete with cell,

 slo. We are
epplicmtion.
 overall, fitted high-lux P.M. latent model, 80%.
GRADPLAN H/COL, MiCROPEOHRE, wospended in quare freme, with plated

 18 la . dia, $29 / 6 . \mathrm{F}$
for D .104 onil, $8 / \mathrm{m}$

 2,000 ohms, 25/- patr. FY, OBIT

 100,000 ohm and merohm, any one, $8 / 11(45 /-$ dos.). PYe onry
 and $80 \mathrm{r} . \mathrm{p} . \mathrm{m}$. (coardboard only). $1 /$.

Pleest tnciude arfiretant for derpetoh, whore oot atated.
M.R. SUPPLIE8, 68, New Oxtord 8treet, Londen, W.0.1 (Telephone: MUSeum 2958)

Announcing

 Glass Seal Termimals(Process Patent applied for)

LIST No. 576
750 V. DC. Working at 40,000 reet. I.500 V. DC. Working at sea level.

LIST No. 577 .
1.500 V. DC. Working at 40,000 reet. 3,000 V. DC. Working at sea level.

AFTER rather more difficulties than we expected, we have developed a method of production in our factory at Enfield, where we are able to turn out many thousands per week...NOW.
Terminals at present available are illustrated about actual size; other sizes will follow.
They withstand instantaneous and repeated thermal shocks of at least $250^{\circ} \mathrm{C}$ and will support at least 40 lbs. per square inch air pressure without leakage. These terminals are supplied tin-plated to permit soldering with modern resin covered solders or solder pastes.

> Supplied packed in
> cartons containing 100.

SECURITY MEASURES

TIE BOLT
This Bolt was originally turned from Round Bar and Milled, or"manufactured as a Hot Brass Stamping. Cold Forging showed an approximate saving of 70% in material.
Specialists in Cold Forging; Roll Threaded Screws; Solid and Tubular Rivets; Nuts and Bolts in all metals; Small Pressings; Auto and Capstan-turned Parts. LINREAD LTD., STERLING WORKS COX ST. BIRMINCHAM, 3. TELEPHONE NO.: CEN. 395I P.B.X

$$
\begin{aligned}
& \text { TELEPHONE No, CEN. 3951 P.B.X } \\
& \text { TELEGRAMS: " LNREAD BIRMINGHAM." }
\end{aligned}
$$

London Office: Clifton House, Euston Road, London N.W.1 Tele. No.: Euton 8261

BACK RD SHERMHILST. WALYHAMSTOW. EI7. PHONE WARKSWOOD4366?

Hostiles, bearing 194, height 10,000 —back went the warning and fighters raced to intercept. From many miles away Radar plotted the enemy's exact position, and brought the defences hurtling into action.
The science of electronics made it possible, for at the heart of every Radar installation lies the valve.
OSRAM VALVES have been in the forefront of electronic development during the war, and will bring to the pursuits of peace many well-tried electronic devices to speed, smooth and make safer our way of life.

One of the OSRAM VALVES specially developed for Radar -an ACT 20 which will find many peace-time applications.

CATHODE RAY TUBES

WORLD'S LARGEST RADIO COIL MANUFACTURERS

RADIO FREQUENCY INDUCTORS INTERMEDIATE FREQUENCY TRANSFORMERS RADIO FREQUENCY COIL CHOKES
MICA COMPRESSION
AR CONDENSERS
AIR DIELECTRIC CONDENSERS MICA MOULDED CONDENSERS SICKLES SILVER CAP

GANGED PERMEABILITY TUNING
COMMUNICATIONS EQUIPMENT
F.M. EQUIPMENT PARTS
U.H.F. RADIO EQUIPMENT

SPECIAL ELECTRONIC
EQUIPMENT
The F. W. SICKLES Co. CHICOPEE, MA8s., U.S.A.

They fit inside a delicate ring, they are so small; but they are mighty in dependable performance for hearing aid apparatus. Long lived with low battery drain, RAYTHEON Flat hearing aid tubes sive quality performance for electronic hearing aids.

PRODUCTION CORPORATION HEARING AID TUBE DIVISION Newton. Massachusetts.
Fratheromen

ARMY-NAVY "E" WITH STARS Awarded all four Divisions of Raycheon for Continued Excellence in Production.

ARE ALWAYS DEPENDABLE

Contacts in a vibrator take a lot of punishment. They must operate under widely varying conditions of temperature and must "make and break" 115 times a second. Small wonder that alert engineers think of contacts firse when selecting a vibrator 1
For over 20 years, Mallory has been industrial headquarters for every type of electrical contact. It has introduced new contact compositions.. evolved better designs formulated improved surface finishes. As a result of this wide experience, Mallory equips its vibrators with special grade sungsten contacts which are cut in its own plant from material made to its own specifications. They give longer life, are subject to a minimum of erosion and transfer.
Mallory is ready to apply its special vibrator "know how "t to your specific applications.

P. R. MALLORY \& CO. INC.

 INDIANAPOLIS, INDIANA, U.S.A.Radio and Electronics Division

ALSO

"MYKROY" CERAMIC INSULATING MATERIALS GENERAL ELECTRONIC VACUUM CONDENSERS

FOR THE FUTURE

Thase Manufacturers will help solve your post-war problems.
Register your name now for full details which will be sent you when supply conditions again permit.

LIMITED
Kingsley Road, BIDEFORD, N. Devon

TYPE 2600 MIDGET VARIABLECONDENSER

WHEN the mission of complete victory is accomplished, General Instrument will help "Win the Peace" by making the best use of still greater knowledge and experience in the manufacture of variable condensers and drives.

THE GENERAL INSTRUMENT CORPORATION ELIZABETH, N.J., U.S.A.
 are one of the new developments leading industrial designers are thinking of to speed the work of a busy post-war world. Applications of this compact, plastic-cased walkie-talkie" are almost unlimited Naturally, this is only one of tho usand of uses plastics will be put to after the war, but it will serve to remind you that post-war planning is being done... Kurz-Kasch designers, engineers, coolmakers and moulders . . . specialists for a seneration in plastic planning and moulding will help you with your problems.

KURZ-KASCH INC. Planners and Moulders for the Age of Plastics DAYTON • OHIO • U.S.A

In communications, wherever measurement for testing purposes is involved, empiricism can be ruled out. Of no avail without scientific instruments is anything the eye can see, the hand feel or the most observant remember. The radio engineer, therefore, must have test gear on which he can rely and, thanks to the foresight of Marconi Instruments Ltd., has a wide selection from which to choose. And he finds exemplified in these Marconi products the qualities so characteristic of British Engineering craftsmanship-rational design, precise workmanship and technical efficiency.

MARCONI (3) INSTRUMENTS, LTD

ST. ALBANS, HERTFORDSHIRE
Telephone : St. Albans 4323-6

WHAT HAVE YOU?

RAYMART LTD have management vacancles; how do you measure up?
(a) What is your Amateur Radio background?
(b) What knowledge have you of latest developments and shortwave communication and radiolocation development?
(c) Can you deal with technical correspondence?
(d) What selling experience?
(e) Any manufacturing experience on up-to-date production machinery like B \& S Auto Screw Machines, Capstans, Millers etc?
(f) When are you free and at what salary do you expect to commence?
(g) Are you interested in a profit-sharing proposition with low salary?
(h) How have you served your Country in the war?

WHAT WE NEED

We need live radio men with enthusiasm and initiative to work without supervision, feeling that the business is partly their own by virtue of their share in its prosperity.
BILL NIGHTINGALE (G5NI) will respect all confidences.
48, HOLLOWAY HEAD, BIRMINGHAM, I

 Loss Ceramics to the problem of Dielectric Loss in High Frequency circuits.

Years of laboratory research and development have brought these materials to a high degree of efficiency. To-day they are in constant use for transmission and reception, and play a vital part in maintaining communications under all conditions.

Made in Three Principal Materials

FREQUELEX-An Insulating material of Low Dielectric Loss, for Coil Formers, Aerial Insulators, Valve Holders, etc.
PERMALEX-A High Permittivity Material. For the construction of Condensers of the smallest possible dimensions.
TEMPLEX-A Condenser material of medium permittivity. For the construction of Condensers having a constant capacity at all temperatures.

LOW LOSS CERAMICS
BULLERS, LTD., THE HALL, OATLANDS DRIVE, WEYBRIDGE, SURREY Telephone: Walson-on-Thames 2451. Manchester Office: 196, Deansgase. Minchester

For the laboratory, amateur transmitter, and wherever QUALITY and RELIABILITY are essential. WEBB'S offer unrivalled stocks and service. All apparatus and components are guaranteed-if your needs call for discrimination WEBB'S can helpDON'T come to us if you want obsolete or secondhand material !
Comprehonsive stocks enable us to quote for EVERYTHING IN RADIO - our regular adverts show morely a fow intoreating lines. PORTABLE AMPLIFIER CASE, comprising chassis, cover and base plate. Overall size $16^{\circ} \times 8^{\prime \prime} \times 9^{\circ}$ high, chassis depth $2 t^{\prime \prime}$. removable top cover adequately ventilated top and sides, fitted two carrying handles. Chassis drilled in front for four controls, cut for seven valves, side entries for mains cable and speaker plug. Well finished in black-crackle, this makes an ideal amplifier case
$E 2 \quad 121^{6}$
Packing, and carriage $2 / 6$ extra, with slight delay in despatch owing to shortage of packing. Callers from stock.
MICROPHONES, EtC.
 Rothermel Desk Stand, extends 12° to 24°, chrome finished. A well-made accessory ... \&1 15 : Webb's floor Stands-coiliapsibie.................................... <220 LOUD SPEAKERS
Maynavox Mains Energised, 2,200 ohms field, speech coil $2 \downarrow$ ohms, with pentode translormer $8^{8 \prime}$ type. baffli aperture 7i. \qquad $\begin{array}{ccc}41 & 10 & 0 \\ 8 & 8 & 6\end{array}$
Permanent magnet speakers in variety from 2^{2} miniatures to : Vitavox K12,20 high fidelity 20 watts, overall dia. $12 \mathbf{t}^{\circ}$, baffle aperture' $10{ }^{2}$. A heavy duty speaker combining punch, high efficiency and fidelity. Flux density 17,000 lines per sqii $\mathrm{cm}_{0} 0$

CONDENSERS

T.C.C. metal cased 4 mid. 500 v . working. \qquad
T.C.C. metal cased $8 \mathrm{~m} / \mathrm{d}$. 500 v . working. \qquad

KEYS

Webb's operating key, well balanced G.P.O. type bar key, heavy lacquered brass on polished wood base, front and back controls
Webb's Amateur Key, similar high-grade laequered brass, slightly lighter but perfecty balanced, front and back contacts... \&l 2 lighter but perfecty balanced, front and back contacts... $21 \quad 2$
Practice Keys: G.P.O. Bar type on wood base............ 4

BOOKS. Technical books a speciality, a fow only as shown :
Introducing Radio Receiver First Course in Wireless Servicing (Squire) 6/= (Decibel)......................... 4/6 Wireless Amplifier Manual Radio Interference Suppression (Bernards) 2/- (Ingram) 5/Radio Daca Charts (Wireless Introduction to Valves (HenWorld).......................... 7/6 derson) 5/Foundations of Wireless Radio Technique (Mills)... 21/(Sowerby) 7/6 Superheterodyne Receiver Radio Simplified (Clarricoats) (Witts)............................. Basic Radio (Berton Hoag) 21/- (Tait) 2/-

Prompt attention given to xour enquiries and orders whether small or large.

14 Soho Street, Oxford Street, London, W.I

Telephone: Gerrard 2089
We are avallable 9 a.m. till 6 p.m. for OFFICIAL businass, but please note our SHOP HOURS- 10 a.m. zo 4 p.m. (Saturdays $10 \mathrm{a} . \mathrm{m}$. to 12 neon.)

LOOKING AHEAD

The day thas hostilities cease may be a litele late to start deciding who shall supply the Transformers and Chokes for your post-war product.

Why "not let us have a rough idea NOW of what you will want, and let us submit suggestions and prototypes?
Just at the moment we are extremely busy making hundreds of thousands of transformers for the batele front, but we are able to devote a cercain amount of thought and planning for post-war.

Installed in our new actory is the very latest in Coll Winding MachInes, vacuum Impregnating plant. test equipment, and everything necesemry for the production of the finest transformers that are mada.

Drop us iline and let us show you
the latest fashions. You are bound
to be interested!

MOXLEY ROAD, BILSTON, STAFFS.
Telephone: BILSTON 41959-0

Keeping up regular supplies these days is no easy job although we use every endeavour to schedule production evenly. Just now-whilst we are writing this advertire-ment-for instance, we can give very prompt delivery of that 'truly portable' Portable P.A. Equipment, the " UNIVERSAI. FIFTEEN," operating etficiently on all voltages from 200-240 AC or DC. But a week... a month hence? Who knows? So if you are interested in equipment in which more than usual attention is paid to quality, we cannot urge you too trongly to write to us right away.

R. S. AMPLITIERS LTD - 3-4 HIGHFIELD ROAD - SHEPPERTON • MIDDX. TELEPHONE. WALTON.ON.THAMES 1019

Pressure moulded by a new process that cannot yet be described in detail, these fittings are terminations and connections used in electronic circuits. The production of these polyethylene mouldings in quantity is the result of a new manufacturing technique successfully evolved by Callender's.

BRITISH INSULATED CALLENDER'S CABLES LIMITED

Hamilton House - Victoria Embankment • London, E.C. 4

CERAMIC

HighVotage CAPACITORS

Outstanding characteristics of U.I.C. Pot and Plate Capacitors are the high break-down strength, low loss factor, and small dimensions. Working Voltage: 1o KV D.C. only or 7.5 KV D.C. Peak + A.C. Working Load R.F.: Up to 25 KVA according to type. Max. Current: Up to 14 AMP. according to type. Range of Capacitance: 5 pF to 1200 pF . Tested to Specification Kiro. Full details on request.

UNIted INSULATOR CO. LTD. 12-22 Laystall Street, LONDON, E.C. 1
Tel. : TERminus 7383 (5 lines) Grams. : Calanel, Smith, London

From 1939 to 1945
 115,000,000 RECTIFIER ELEMENTS,

built into millions of rectifier units
for War Service on land, sea, and in the air-in every theatre of war as well as in every branch of war industry itself-served the needs of war to further the aims of peace.
Most of these have been of new and advanced design and the benefits of this progressive research and development will soon be made available to all.

(4) WESTINGHOUSE (1)

METAL RECTIFIERS WESTINGHOUSE BRAKE * SIGNAL CO., LTD., Pew Hill House, Chippenham, Wiles.

FILM INDUSTRIES LIMITED

 pioneers of Public Address Equipment, offer:-

LINAGLOW LIMITED

TEST METERS

Finest qualty Voltmetera， 2 range pocket type， 0.25 ． $0-250$ ．moving lron， $35 /-$ ．Papel mounting moving coll

 $0.150 \mathrm{~m} . \mathrm{a} ., 2 \mathrm{ha}$ ．dial， $45 /-0.14 \mathrm{amp}$ ．，with thunt， $49 / 6$ $0.50 \mathrm{~m} . \mathrm{m.}$,1 in．dial， $45 /-$

TARIABLE CONDEWEREA．2ogang， 0005 carambe with pointer， 1 ＇7／9．Mdget 2 gans ．00035，8／6．
TUEULAR PAPER CONDEYSERS． $350 / 500$ Y，D．C．Work－ ing． $0001,8 d .0026,44, .01,8 d ., 02,7 \mathrm{da}, .04,8 \mathrm{~d}$ ， 08，9d． $1,104,{ }^{20}$

2－mid．TUBULAR CONDEN8ERS， 350 च．， $2 / 6$.
ABELAL AND OAOLLLATOR COILs．Beat D．8．O．Wire and lomg wave， $16 / 50 \mathrm{~m} ., 200 / 550 \mathrm{~m} ., 1,000 / 2,000 \mathrm{~m}$ ．：whth circuit diagram，15／－the met．
I．F．TRAM8FORMRRS． 465 K．C．＇s Iron－oored Lits wound Ininimum ean．Limited quantity， $17 / 6$ matched pair： 9／6 each．
 Arminium can； $17-61,220-585,725-2,000$ metres．（Theme colle equal to performance of auperhet．）Completo with circult diagram， $9 / 6$ the pair．
M．L．T．R．P．AERIAL COLLs．Alumigham sereened Philips． $200-585,725-2,000$ motres，complete with circult diagrame， $8 / 9$ each．
WAVE CBANGE SWTTCH，to sult all sbove colls， $5 / 9$ ． gCBEETED MTBELACED FLEXBLE MICROPHONE CABLE，Twin 6 yards for $6 / 9$ ；tingle， $1 /$ per yard． FOLTME COFTROLS，1，B，10，20，25， 50 and 100 thourand ohms，t_{4} i， 1 and 2 meg，whout withoh， $4 / 8$ each．As above，Flth awthch， $6 /-$ aach ： 100,000 ohms，t mep，double－ pole switch，bert American，6／6 euch ：2，000 ohms only， Wre wound， $2 / 6$ oach ，Moret mer，with switch，5／6： leas switch， $2 / 6$ each．

TADs TRAMSFORESRS．50－0－850 4 V． 6 amp．O．T
 100 m．m．， $82 / 6$.

gLOW－zitiotion DRIFE．8－1，completo whh drum and spindle，3／－．
PURH－BUTTON UIITR．Complete whit esoutaheon and knobs，4－way．Now， $4 / 6$ each．
WANDER PLUGE．In 2 colours， $2 /-\mathrm{per}$ dosm．
LITE CORD！ 8 －wat，hears－duty，s smp． 360 ohms，9／6 ： 480 ohms， $18 / 6 ; 600$ ohman， $16 /$
480 ohms： $7 / 6: 600$ ohms， $8 / 8$.
EPEOLAL OFFRE BATTERE OEARAERA．l－mp type

2 SPECIAL KIT OFFERS

EIT 1．－Tuning neart andtablo for 6－vilve superhet，com priaing Furjable condenase，and atow－mothon drive．at of fron－cored I．F．＇e 665 K．C．＇s Litz woond，merlat oon，R．F． tranaformar and oecliator cons．All kimanda，B．M．and L． Fith wircult diagram for complote set， 88 ge .6 d ．
ITX 8．－Tunin heart for s－valve supmitet，compriaing Farkable oondenet and alow－motion Arive，set of tron－aored
 All trimmers and pedder with Five enangemitoh for plote set． 8 19a．6d．

WESTINGHOUSE

METAL
RECTIFIERS EX－G．P．O．

Suttable for chargery，otc． H／weve．H．T． $150 / 400$ v．， $50 / 800$ m．n．18／e．

DE LUXE ALL－WAVE SERVICE

SIGNAL GENERATOR

A．O，matne， $300 / 950$ v． 50 90 MO ，to $100 \mathrm{~K}, \mathrm{O}$ ，all 20 MO ．to 100 K．O．，all fundamentally ta 5 banda Without rapa B／M dial． Dtrect calbretion to tre－ quencreat output Eottonuator． Internal modulation． 400 O／B Iron－cored colle． The generator in antrely ccroened in hesvy metal cembinet．Dim 10in．x 10tn．x 12ln．Esch 16 हng．

SERVICE KITS

85． 1 b－mid． 500 v．w．Eleotrolythe， 12 mach manted tubular peper condencert，carbon wire end reshtort 3 yardin aleoving， $9 / 6$.
BEA． 8×8－tuid．$B 00$ v．w．Flectrolytio， 12 eech seeorted ubbular paper condenerrs，oarbon wire－end resintor 3 yarde aleeving， $10 / 6$ ．
． 18 －mid． 500 v．W．， 1 S2－mid． 890 v ．w．Electrolytice each moorted tubular papar oondensars，and carbo nire－end reaintors， 1 volume contr 82／6
tice， 25×8－mid． 800 v．w．， 182 －mid， 320 V．w．Rectroly－ Fire－end realistors 1 volume oontrol， 3 yarde aleefing 24／6．
 320 v．w．Electrolytics， 18 asch amortad tubular pape condenaere and carbon wire－end reatetore，$\frac{2}{}$ volume con trole， $37 / 6$.
 132 －mid． $820 \mathrm{v} . \mathrm{w}$ ．Electrolytica， 12 esch amorted tuhular paper oondensers，and carbon wire－end resintors， 2 volume controla， $89 / 6$ ．
500 ． paper oondenuera．and carbon 26 anch amorted tubaler eleeving 6 yarda P．V．O．cablo， 8 tone controls， 6 amorted valveholdern， 84184.
38A． 38 －mild． 800 v．w．， 38 －mid， $320 \mathrm{v}, \mathrm{w} ., 88 \times 8$－midd． 500 v．w．， 24 －mfd． $400 / 500$ v．W．， 25 each amorted tubular paper condmasm，and carbon wire－and renilion， 6 yarbs sleaving， 6 yards P．V．O．cable， 3 tone controln， 6 amorted
 800 D．w．， 68 －mid， 500 v．w．， 64 －mifa． 600 v．w．0 882 －mid．
 500 v．Electrolytion， 1 palr long－noeed pllers，I dozen Farde E．V．O．oable， 1 box thrulethe tepe， 1 pali $1 . F$. trannformare， $466 \mathrm{~K} .0 .{ }^{\circ} \mathrm{A}_{2}$ ，tron－oored， 1 met serlal and oscillator colle， 16 P8，000 matrah， 6 Jarde alooving．${ }^{6}$

T．R．F．3－WAVEBAND 4－VALVE CONSTRUCTORS KIT

$17-2,000 \mathrm{~mm}$ ．Parts，naw，ex－talevision，alumialum sareened
 in thio corvult rive a perforyaze equa to a superhett， wirlos and theoretical disurar－mothtug axtra to purchane Changin dimp． $1 \% 1 \mathrm{n}, \times 8 \mathrm{in} . \times 6 \mathrm{in}$ ．to top of dia， $200 / 250 \mathrm{~F}$

ELECTRIC IRONS

Bent qually Vitreowe enamel finteh．230／250 v． 450 watt Bi the．，whih lesd and plug，38／6．

BREAKFAST COOKERS

Fitreoue enamel Anlsh，hot plate and oven．Dasilewhes， 200／250 $7 ., 57 / 6$.

CAR AERLALS．Telescoplo acuttle fixtng，extemding to 4ft． 6 in．；bonite lualatort，nlekol－plated， 2216 each．
FIBRATORS，4－pin，6－volt，beat quality Amorlean， $10 / 6$ esch．

MIDGTT FANE TKPE．Farimble trimmert， 60 monid．，8／－ each．
RELATS．Complete 他h circulk breaking owltch，200／250 v． A．C．， $60 / 80$ v．；D O， $300 \mathrm{~m} . \mathrm{A} ., 16$－mpl．Wwitch， $7 / 6$ each．
VALVEEOLDERS．Amphenol type．International or Engiloh octal chasie mountinf．1／e each： $10 / 6$ per dosen． Engleh wafer trpo，4－8 pin， 6 for $2 / 6$

LOUDSPEAKER TRAMSFORMERS．Pentode Outpu $40: 1,50 \mathrm{~m} . \mathrm{s} ., 410$ ：Midget multi－ratio $60: 1,80: 1$ $40 \mathrm{~m}, \mathrm{a} . \mathrm{y}$ 7／6：Multi－ratlo， $40: 1,60: 1,80: 1$ and puah pull $80 \mathrm{~mm}, 10 / 6$ ；Pentode Output， $12 / 1 \mathrm{~s}$ ohmag， 100 m. ．t． $12 / 6 ; \mathrm{H}$ evy duty，multi－ratio $24: 1,41: 1,48: 1$ 88：1， $82: 1,116: 1$ and P．P． 80 m．e．， $15 / 6$ ； $8: 1$ Inter valie．10／6：Puah－pull output，20－wett， $4,000-0-4,000$ Primary，2．6，7．5 and 12／15 ohms，secondary，25／－．

P．M．LOUDSPEAEERS． 3 ohm Volce Coil，Rola，Goodman and Celeation． 64 in ．With trangformer， $30 /=; 81 \mathrm{n}$ ．With
 29，6：8in．，24／－： 12 in ． 261 Be ； 10 in ．Matan coergised 250 ohms， 85 －；B．T．H．Model，R．K． $10 i m$ M Min energised 28 lba ．，recondiLioned as new，deas for P．A．work， 866 ． 10in．Mains energised， 1,140 ohms，with trandormer． $45 /-$ See tranaformers above to ault．

VALVEs．Amoricen typen，at B．O．T．controlled retal pricen．For replacement purposes only：6FS，12F5． 1255，128F5，1185， $9 / 8: 5 Y 3,1 C 5,11 /=6 Q 7,1297$ 11／7：8K6， $8 \mathrm{K7}, 12 \mathrm{~J} 7,128 \mathrm{~J} 7,6 \mathrm{~V} 60,12 / 10$ ：6A8 6B8，6ВA7，14／－．
Also British valves it manufacturer＇a liat pricea：6X δ_{0} UU4，UUB， $11 /$ H141DD，TDD4， 1177 ；AO／VP
 $18 / 10$ ：D1 Dlode 1 in ．Peanut valve whth valvoholder， BL35，PRN 46，U21，6L6，18／8．Prices include purchee． tax，edd sd．per valve post．
RADIO MECEANICR LONG－NOSED PLIERS．EX－Govt took，reconditioned like now，exceptionaliy chesp，4／－ Brtrs long－noeed 8 ftn ， $8 / 6$.
HIGH VOLTAGE BRAIDID BLEEVLIGG． 1 and 15 man 2,3 and 4 mm．，frot－clan qualtity， $8 / 6$ per dozen jarde． P．V．c．CABLE．14／36 Red，Green，Blueand Yollow，8／－ per dozen yarde．

SPECIAL OFFERS

－meg．Midrot Volume Controls for car radion．otc．，S／6， 10 tn Hespy Magnet P．M．Loudepeskern with Pentode output Tranaformera，82／6．
Mains Torele（8witches Panel Mounting 2／－esch．
DPDT Bwttchea，pamel mounting，ex－C．P．O．，8／0 ath． Retaye，ex－G．P．O．，300，500，1，950，2，000，6．500，8，000． 10,000 ohms， $8 /-$ sach．
Wire－wound Carbon Realitons，f，ind 1 wett．We have prectically every ajze in steck．Bend us your requiremeats．

METAL RECTIFIERS EX－G．P．O．

sultable for amall charsers． relayt，ete．12p．full weve，

 30 m 賭， $4 /=: 2 \mathrm{v} . \mathrm{H} /$ wave。 18 man， $\mathrm{H}^{\prime} \mathrm{C}$ ：H1， 21 v．，D．O． $10 \mathrm{~m} . \mathrm{m}, 3 / 6$.

Wireless World August 1945

WHY YOU PREFER ACOUSTICAL-One of a series

Acoustical, all condensers in the power pack
are of the paper type, resulting in the utmost reliability. Just one more reason why you prefer Acoustical.
"Addressing the Public"- a booklet of useful information and diagrams for all those engaged in Public Address work.

1/- post free.

one in a thoussand

Ten years ago we introduced the first British-made low-loss ceramic. To-day the range of FREQUENTITE components covers more than a thousand pieces of every shape and size.
With such a store of manufacturing experience we are able to offer advice backed by practical knowledge on your insulation problem. Please consult us
 fefore you finalize your design.

STEATITE \& PORCELAIN PRODUCTS LTD.
 Teleobono: Stourport 111.
 Telograms: Steatain. Stourport.

Proprietors :
ILIFFE \& SONS LTD.
Managing Editor : HUGH S. POCOCK, M.I.E.E.

Editor:
H. F. SMITH

Editorial, Advertising and Publishing Offices:
DORSET HOUSE, STAMFORD STREET, LONDON, S.E.r.

Telephone:
Waterloo sjs3 (ss Ilnes).
Telegrams
" Ethaworld,Sedist,London."

Δ

PUBLISHED MONTHLY

Price: 1/6
(Publication date 26th of preceding month)

Subscription Rate:
Home and Abread 20/- per annum.

Radio and Electronics

35th YEAR OF PUBLICATION

VIBRATORS • TRANSFORMERS • SWITCHES • COILS

MEET A GREAT LITTLE I.F!

Specially designed to give the maximum gain and selectivity combined with lilliputian dimensions*Wearite I.F. Transformers are provided with onehole fixing, the terminal wires being fed through insulated bushings thus preventing movement aftermounting. They are available in the following "preferred" frequencies.

$$
\mathrm{M} .418 \ldots . . .9 .72 \mathrm{Mc} / \mathrm{s}
$$

as well as in frequencies for particular applications.

- Coils enclosed in pot-type iron dust cores
- Tuning by means of adjustable iron dust centre corcs
- Fixed tuning condensers contained in screening can

Fullest details of the complete range of W'earite I.F. Transformers will gladly be sent on request.

The letter Eta

(the Greek long e)
is known by
engineers as the symbol
for Efficiency.

The Philips emblem is another sप்̇mbol for elficiency.

The world-wide

reputation of Philips
electrical products is based on the utmost efficiency in design, construction and performance.

PHILIPS

LAMPS • RADIO • X-RAY • COMMUNICATIONS EOUIPMENT
 AND ALLIED ELECTRICAL PRODUCTS

PHILIPS LAMPS LTD • CENTURY house - shaftesbury avenue - london - W.C. 2

WirelessWorld

Radio and Electronics
Vol. LI. No. 8
AUGUST 1945
Price 1s. 6d.

Monthly Commentary

IT is widely accepted that the

Television:
Standards of
Comparison cinema provides a convenient and useful standard of comparison when we come to discuss the vexed question of fixing the degree of definition desirable for our post-war television service. In the Television Commitee's Report, issued early in the year, such a comparison is constantly made, particularly with regard to big-screen television, and it is categorically stated that the pre-war 405 -line system " is not adequate for the large cinema screen, which requires a definition equivalent to a standard of the order of 1,000 lines." Elsewhere in the Report, and without any proviso as to size of screen, the Committee. expresses the view that the aim in developing a high-definition system for the future should be " to approach the cinema standard. We think that television definition should eventually be of the order of 1,000 lines.

Is cinema definition, in fact, equivalent to a r,ooo-line television picture, and, as a secondary question, is the cinema an entirely reliable standard of comparison? An answer to the first question is offered in an article appearing elsewhere in this issue, in which the author concludes that, taking into account the conditions under which the final screen image is produced, cinema definition is unlikely to exceed a television equivalent of $400-$ 500 lines in the centre and 300 lines at the edges of the screen.

Questions involving the optical technique of cinematography are rather outside the scope of Wireless World, and so we have consulted the Editor of our associated Iliffe journal, The Amateur Photographer. In general, he is in broad agreement with the contentions made in the article just quoted, differing only in matters of degree. For instance, he points out that the figures given for the cinema camera lens relate to minimum performance, with the lens wide open. Stopped down, as in bright light, the performance will improve to an extent almost certainly surpassing the limits set by the film. He gives this limit, for film of, say, 55 lines per mm., as about 840 lines per pic-
ture. The projection lens does not lower definition at the centre of the field, though it does so towards the edges. Thus, 840-line television is considered to be the highest standard necessary if equality with the film is the aim. It is also considered that the small angle subtended by the cinema picture as a whole might usefully be stressed. Few people realise that, to. an observer situated half-way between projector and screen, the apparent picture size with a 4 in . lens is only that of a photoprint $3 \mathrm{in} . \times 4 \frac{1}{8} \mathrm{in}$. as viewed at Ioin.! With a 7 in . lens, size is reduced to $1.7 \mathrm{in} . \times 2.35 \mathrm{in}$.

On the subsidiary question, the Editor of The Amateur Photographer offers a word of warning against the blind acceptance of the cinema as an entirely valid standard of comparison. He points out that the home television viewer can approach as closely as he pleases to the screen, and may thus be unwilling to accept a standard of detail-rendering that would satisfy him in the cinema, where he is anchored to his seat. To satisfy the viewer who wants to look at the screen from a distance of 10 inches, 100 lines per inch of picture would be needed:

Adjusting
 Ourselves

WE can take encouragement in facing the difficult transition period ahead in the thought that wireless men have not become slaves to conventional ideas to the same extent as practitioners in older arts. So far as receptivity to new technical ideas is concerned, that point is well brought out in a letter from a correspondent, himself an old-timer, , published in this issue. But flexibility of mind in technical matters is not enough. The future wireless outlook is potentially fair, but if those potentialities are to be realised quickly and fully, we may be forced to face--or to initiate-drastic changes in the organisational set-up in the industrial and other " political " spheres. It will be the aim of Wireless World impartially to present any ideas bearing on these matters that seem likely to bear fruit or to direct thought along profitable channels.

THE "TELEION"
 A Versatile Gas Discharge Relay Valve

IN the previous issue of this journal there appeared an article on a high-speed telegraphic system in which one of the essential elements was a gasfilled relay valve of unusual design. It is proposed in this article to give some further details of this valve which has many useful applications in the electronic art.

Fig. I. Variation in voltage across input electrodes (a) without glowup electrode; (b) with glow-up electrode.

In the early stages of development of the high-speed telegraph system in 1934 an ordinary two electrode neon valve was at first used as coupling element and later the Pressler neon relay was tried, but because of its sensitiveness to variations in the HT supply and its instability, it proved unsatisfactory. Better results were obtained loy using the Pressler tuning indicator with its third electrode which was normally used for suppressing noises. I'his meant that for the first time it was possible to maintain the glow in the neon device over its whole working range, instead of the usual switching on and off with each impulse as was the case with the two electrode valve. Unfortunately, however, only a very small output voltage was obtainable from this three electrode devite as it was not possible to polarise the voltage on the third electrode without interfering with the proper functioning of the other two electrodes.

At this stage the first improvement was made which culminated in the production of the Teleion. A screen was introduced between the first and third electrode so as to prevent the direct influence of one on the other, and so enable the

By J. REISS, B.Sc. (Hons.)
(Romac Radio Corporation, Ltd.)

third electrode to be polarised (i.e. to be held at a voltage more negative than the second electrode with respect to the first electrode).

A scientific controversy arose at the time as to whether it was at all possible to screen one part of a gas-filled valve from the other by means of a metal disc which had to have a hole in the centre to allow for the spreading of the glow along the second electrode. It was maintained that if ionisation took place in one part of the valve it could not be prevented from occurring in the other part of the valve by means of such a screen, and that at best one would still have to contend with the so-called " dark current." However, in the same year, 1934, one such valve was actually made and its effectiveness demonstrated.

In 1935 a fifth electrode was added in order to reduce the time lag normally encountered in gasfilled valves duc to ionisation and de-ionisation. This again provoked a father prolonged scienitific controversy, but later on in the same year it was demonstrated on the cathode-ray tube that by the introduction of this fifth electrode-the so-called " glow-

Fig. 2. Principal electrodes in the Teleion valve.
up " electrode-and by maintaining it in an over-saturated condition, the ionisation and de-ionisation times could be reduced to something negligible. In Fig. I are shown the type of traces seen on a cathode-ray oscilloscope of the variation of the voltage across the input electrodes of the Teleion when fed from a beat frequency oscillator (through a rectifier). Curve (a) was taken with a Telcion which had no saturated glow-up electrode whilst curve (b) shows the improvement when using an over-saturated glow-up electrode. The humps in curve (a) illustrate the time and energy which is required to produce ionisation and de-ionisation before the valve operates normally and stabilises its own input voltage.

The addition of this fifth electrode meant, of course, that the range of speeds for which this valve could be used had been greatly increased.

With the help of this five electrode Telcion the first successful high-speed telegraphic arrangement was produced in 1937, this being the forerunner of the arrangement which was used with such remarkable success during this present war.

The Teleion in its present form is a gas-filled valve having five basic electrodes.
I. The positive input electrode, which is a cylinder at the upper end of the valve.
2. The negative input electrode, which is a vertical thin wire in the centre of the valve.
3. The screen, which is a horizontal plate dividing the valve into two parts.
4. The output electrode which is a star-shaped cylinder surrounding the negative input clectronle below the screen.
5. The glow-up electrode, which is a ring around the negative

Fig. 4. Extent of glow discharge in the active and passive states.
input electrode between the positive input electrode and the screen.

The input as the name implies is formed by the positive and negative input electrodes. The output is arranged across a suitable resistance which is placed between the output electrode and a potential negative with respect to the negative input electrode. (Fig. 3).

More electrodes are added to fulfil certain requirements. There is an auxiliary positive input electrode, which is a thin wire inside the positive input electrode one end of which approaches very near to the negative input electrode; more output electrodes may be added and placed in a row below the original one.

The propagation of glow along the surface of a cathode with an increase of current in the cathode circuit, is a phenomenon in gas. discharge valves. This principle has been incorporated in the Teleion, using the negative input electrode which contains the glow and the output electrode which is
excited by the proximity of the glow. The glow can thus be: maintained on the negative input electrode alone or by extending it downwards can be made to, touch the output electrode also. "This is shown in Fig. 4, where the two conditions for the glow are illustrated.

The following are the general characteristics of the Teleion. As the input current increases, there is at first practically no output current at all, then at a predetermined point the full output current is obtained with a very small additional increase in input current. Then with a further increase in input current the output current may be maintained at a.constant value. It is important to add that. when this process is reversedthat is to say when the input current is decreased again-the new curve obtained almost retraces the curve obtained for an increasing input current as shown in Fig. 5.

Although the change of output voltage across the output resistance is large the input voltage (i.e. the voltage between the positive and negative input electrodes) remains practically constant. This climinates the Miller effect in the preceding valve more effectively than the screen grid tubes normally employed. The traces

the input electrodes whilst curve (b) shows the output of an amplitude of 100 volts. These curves were taken at a pulsation frequency of $1,000 \mathrm{c} / \mathrm{s}$ and illustrate well why the Teleion has proved so successful in high speed telegraphy. The exponential tendencies on one side of the pulses in curve (b) are due to the stray capacities of the leads to the oscilloscope coupled with the one megohm across which the output was taken.
it is of interest to examine

Fig. 5. Input-output characteristic of the Teleion.
more closely why the Teleion gives comparative freedom from Miller effect. One of the chief characteristics of a gas discharge tube is that the current flow may be varied without varying the voltage across the input electrodes. . To control this flow of current a variable series resistance is normally employed. In the case of the Teleion, however, the preceding valve is used as the variable resistance, the control of which is maintained by means

Fig. 6. Oscillograms of input voltage (a) and output voltage (b) at a puisation frequency of $1000 \mathrm{c} / \mathrm{s}$.
in lig. 6 were taken on a two beam oscilloscope, curve (a) showing practically no variation across
of the variation in its grid potential. In Fig. 7 is shown the basic circuit for the parallel connection

CHARACTERISTIC DATA FOR THE "TELEION"

Maximum Input Current	Input Voltage	Maximum Output Current	Glow-up Electrode Current	Screen Voltage	Minimum Input Current Variation
3.5 mA	$150-180 \mathrm{~V}$	$150 \mu \mathrm{~A}$ (across $1 \mathrm{M} \Omega$)	3 mA	$100-130 \mathrm{~V}$	For DC ampl. 0.6 mAA

The "Teleion"-
of the Teleion. It can be seen from the figure that as the supply voltage is constant-particularly as the current withdrawn through resistance R is practically constant and also as the voltage between b and c is constant-the potential

Fig. 7. Basic circuit of Teleion amplifier with parallel connection.
at point a must also be constant irrespective of the variation
of the grid potential. This means that no contra voltage can be reflected back into the input circuit from the anode circuit by means of the inter-clectrode capacities, thus eliminating the so-called Miller Effect.

From the characteristics described it will be seen that the Teleion is pre-eminently suitable for the amplification of weak DC pulses such as those derived from the photoelectric cell in a high-speed transmitter or the diode in a receiving circuit. It has also been employed in a sensitive relay circuit of simple design which provides an output of io watts for a change of input capacity of one micro-microfarad, and it has also been used to improve the fly-back in time base circuits.
The writer wishes to acknowledge, with thanks, the permission given by M. S. Lalewicz, the inventor of the Teleion, to use certain information incorporated in these notes.

IONOSPHERE STORMS

Direct Evidence That They are Caused by Solar Corpuscles

WHEN a solar flare is observed on the visible disc of the sun there is very often, at the same time, a sudden ionosphere disturbance, which results in a brief fade-out of shortwave radio signals. That the one is responsible for the other has been well established, the sudden ionosphere disturbance being due to the increased emission of ultraviolet light from the solar flare.

But sometimes there also occurs, about 20-26 hours after the time of the solar flare, a longer period of ionosphere disturbance of a different character from the first -of the type known as* an " ionosphere storm." This is the more serious of the two disturbances; so far as its interruptive effects on short-wave communication are concerned, for it lasts a considerable time. Almost always it is accompanied by a disturbance in the earth's magnetic field, and sometimes by auroral displays.

It has for a long time been suspected that a connection exists between the solar flare and the subsequent magnetic and iono-
sphere storms, and that the latter may be due to the arrival in the earth's atmosphere of charged particles of matter which were emitted from the sun at the same time as the visible and ultraviolet radiations. If such particles were ejected from the sun in a direction such that they
eventually encountered the earth, then, if they travelled at a speed of $1,600 \mathrm{~km} / \mathrm{sec}$. they would arrive in about 26 hours.

It was recently announced that spectrograms taken at Mount Wilson in 1944 during magnetic storms showed absorption bands in certain parts of the spectrum, while spectrograms taken during calm magnetic periods showed no such absorption. These absorptioni bands are attributed to matter travelling from the sun towards the earth, and they indicate maximum velocities of the order of $1,000 \mathrm{~km} / \mathrm{sec}$. This is the first direct evidence of the presence in space of calcium ions approaching the earth from the sun at speeds comparable with those previously suggested for the causative agent of magnetic storms.
T. W. B.

ELECTRONIC PROCESS TIMER

DESIGNED for the control of all types of industrial processes and machine tools, including rabber moulding presses, bar twisters for concrete reinforcing rods, etc., this unit makes use of a single thyratron valve and gives a range of timing intervals from o to 25 seconds with an accuracy of 5 per cent. It can be employed also as a time delay switch.
Contactors are fitted to handle up to 5 amps . AC at 230 volts; larger contactors can be fitted to order. The instrument requires a mains input of $200-250$ volts, $50 \mathrm{c} / \mathrm{s}$; and is contained in a case measuring 6 in. $\times 6$ in. $\times 3$ in. The makers are G.G.C. Development Co., 109, Belgrave Road, London, S.W.i.

Type P.T.ioiA electronic process and delay timer.

RADIO PROSPECTS

Suggestions for Re-organisation

THE writer has long believed that technicians should take a political interest in the work they do. This does not mean the sort of politics that the citizen practices when he goes to the poll, but that which is concerned with the way his work is done. The scientist who makes a discovery or the engineer who invents a new .machine has a responsibility to society, the responsibility of seeing that the result of his work is used for the good of humanity in general, and not one restricted section of it in particular. A large proportion of the misery that has descencled on civilisation has resulted from scientists and engineers taking the view that the exploitation of their work is not their concern. This attitude must be changed, even to the extent of suppressing a new discovery which might be harmful to mankind if improperly used. At the least, steps should be taken to prevent the new knowledge being turned to base ends. This is against the traditional ethic of science; but the time has come when scientific ethic must give way to more important matters, among which is the protection and advancement of civilisation. In all ways the technical worker must take the initiative in the business of developing new methods and apparatus. In our own particular case the plan to be described, if acceptable to technicians, must be sponsored primarily by technicians. It is they who devised broadcasting, and it is they who will improve it. It is their responsibility to ensure that the general public derives the greatest measure of satisfaction and service from their work, for the simple reason that no one else will. In doing so they will also protect their own interests.

In giving the outline of this plan (for considerations of space do not permit of a detailed account) certain premises have to be made. They are:
(a) That commodities have no excuse for existence unless they

By H. A. hartley
(Concluded from page 201, July issue)

are of service or value to the consumer.
(b) That commodities should be designed to give the maximum service to thie consumer at the lowest reasonable cost.
(c) That where commodities are of a complex or delicate nature, adequate servicing facilities should exist.
(d) That where the nature of a commodity is such that the consumer is not competent to assess its true worth, the consumer should be protected by a specification for the commodity, as to performance and reliability.
(e) That a manufacturer has no justification for existence as a manufacturer unless his production unit is efficiently run and produces commodities which conform to a, b, c and d above.
(f) That a manufacturer who produces commodities which do conform to these requirements is entitled to a reasonable profit; and so long as his production unit is efficiently managed, has a right to expect freedom from interference by outside organisations.
(g) That there are three parties to every industrial transaction : the employer, the employee and the consumer. The interests of the first two are safeguarded by employers' federations and trade unions. The interests of the third must be safeguarded by a new sort of organisation.

Backbone of the Industry

We may now consider how to tackle the matter of production for broadcast reception. This aspect of electronics is here considered because of its wide interest, and because it still forms the backbone of the radio industry. Judging from the work done in the U.S.A., it seems that frequency modulation solves the problem of high-fidelity transmission and reception, because it provides a system of short-wave transmission
practically free from interference. The design of FM receivers and transmitters provides technicians with a good opportunity for new work, with plenty of scope for their talents. The problem of who and what is going to provide the FM broadcasting service will be deferred for the time being. For the moment we shall assume that it will exist within a few years of the end of the war.

At the present time there is a serious shortage of radio sets, and most of those now in use are obsolete or working in an unsatisfactory manner. This being so, the time is ripe for tackling the matter of providing the public with good broadcast receivers on new lines. Never, since broadcasting started, has it been so easy, from a "sales resistance" angle, to break away from stereotyped methods, and if FM also arrives, a new sort of set is wanted. It has already been pointed out that the pre-war way of designing and selling sets produced the wrong sort of equipment, so this plan is based on a new conception of how to get sound and vision broadcasting into the homes of the public.

B.B.C. "Netwörk"

Broadcasting is as much a public utility as water or electricity supply, public transport, or garbage collection. In this country we moved ahead of the Americans . in unification of the source of programmes. It has taken years of experience of the disadvantages of hundreds of irresponsible broadcasting stations, large and small, to make the Americans realise the advantages of the network system. We have had our own network, in the shape of the B.B.C., longer than any other country. We may complain very bitterly at times about the sort of programmes that are sent out, but at least the B.B.C. system was planned. The receiving of the programmes has never been planned, but it can be.

Ever since the time when the valve manufacturers, unable to

Radio Prompecta-

cope with the ever-increasing variety of types of valves called for by set designers, decided to restrict the range, the circuit layout and performance of receivers has tended to become standardised. The valve makers issued to every set maker comprehensive technical reports on the circuit requirements of these standardised valves, and this relieved the set makers from the necessity of having to design receivers from scratch. Certainly, individual set manufacturers introduced novelties of their own which they thought would add refinement to the performance or provide selling points, but basically the various sets had similar sensitivity and selectivity for a given number of valves. Marked differences existed in the design of appendages like tuning scales, controls and cabinet work, but these differences did not provide alternative service to the user. Only one type of tuning scale is really needed : that which is most easily read and understond. The cabinet work is not a radio problem, and is something which does not properly belong to the radio industry at all.

Receiver Designs

The basis of this new plan is a fully standardised range of receivers of varying performance. The range might include:
A medium-fidelity receiver for 13.B.C. programmes. 4 watts
A medium-fidelity allwave receiver.
A high-fidelity receiver for B.B.C. pro- of about grammes. 14 watts
A high-fidelity receiver output. for AM and FM
A small-tube television receiver with medium-fidelity sound.
A large tube television receiver with high-fidelity sound.
Inexpensive gramophone playing desk.
High-fidelity gramophone playing desk.
All these chassis would be designed by a central radio research and development establishinent, and each type would be covered by a detailed specification of performance, quality and di-
mensions. This central research establishment is very much overdue. It is uneconomical in an industry like radio for each and every manufacturer to have a fully equipped laboratory and staff doing work of an almost exactly similar nature to that done elsewhere. Certain it is that without individual effort in the past many of the advances in technique that have been made would not have materialised ; but that initiatory period has passed, and the technique of radio is now fairly well standardised. So much so that for years every broadcast receiver has been made under a common patent pool, and those firms that did the bulk of the original research and development have been handsomely rewarded for their time and trouble. If the industry ever agreed to produce standardised receiver chassis, then it is perfectly obvious that the technique of designing them would also be standardised. The central research institution is the answer.

The cost of maintaining this establishment would, whatever happens, have to be borne by the consumer. Every scrap of radio research must always be paid by the consumer, and it is really a side issue whether it is done by private firms or by the Government. The writer would repeat that le is not here concerned with " isms" of any kind. If Britain became socialistic, then the research centre would be run as a State establishment ; if capitalism continues, then the cost would be met by the Radio Industries Council, through the individual members, and ultimately by the people who buy the sets. What is vitally important is the direction of the establishment. Radio must serve the public first, and the manufacturers afterwards. The director would, therefore, be an administrative scientist representing the public and absolutely frec from dependence on the industry. He would, in fact, be a State servant.

The designs of the research centre would be made by any manufacturer who wished to make them, and no manufacturer would be allowed to design and produce other equipment unless he also undertook to produce a certain quota of the standardised sets.

The standard chassis would have to conform to the specification laid down for them and they would be sold under the positive guarantee that they did so conform. By this provision the public would be protected from the effects of shoddy material and bad workmanship. It seems logical that the standard chassis should be sold at standard prices, but this system is so liable to abuse, as experience of cartels has shown, that it might be better to retain those features of private enterprise which result in the most efficiently run production unit making commodities at the lowest price, other things being equal.

Advantages

This scheme of a restricted range of standard chassis has many advantages. The cost to the consumer would be enormously reduced by the elimination of wasteful competition; also by the lowering of overhead costs per unit by the larger production of each type consequent on the reduction of number of types. The dealer who has to transfer the set from the manufacturer to the customer would have to carry a very much simpler stock, and his servicing problems would be substantially reduced by having to cater for orily a few types instead of many; this would reduce the variety of component parts he has hitherto had to carry in stock. Further, standarclised mass-produced test equipment could be produced at a very low frgure, so enabling even smalltown dealers to install the necessary facilities for carrying out all repairs on their own premises.

The manufacturers would benefit very considerably indeed, for they would at once be relieved from the anxiety of speculative production. Absolved from the necessity of trying to guess what the public will buy, they will have full opportunity for planning their production in the most effective manner ; by statistical investigation, the Radio Industries Council could estimate the total number of sets required each year, -how the total should be divided up into proportionate parts accorling to type of chassis, and allocate production of agreed percentages among its members. The factory
workers would bencfit by being relieved of the bugbear of seasonal nuemployment, a grotespue and inexcusalbe result of letting things take their own course. After the war labour will have to be directed in very large numbers to such activities as the production of building materials and the erection of homes for the people ; it will be necessary for factories in other industries to employ their workers in the most efficient way, and standardised radio production would remove the seasonal demand for sets which were new only in " trimmings," and so enable the factories to work at a constant rate all the year round.

And finally our techmicians would benefit. Instead of a mad rush for three months in each year getting something ready for the next Radiolympia, a something which only emerged from the emotional whimsies of the managing director, the indeterminate hunches of the sales department, and such snooping e into the activities of other manufacturers as could be achieved, our scientific workers and engineers would be able to evolve a properly planned scheme of broadcast transmission and reception worthy of the century in which we live. They would have security. and time to do their work properly. They would not have to make do with ill-equipped laboratories, as so many have had to in the past, but, with the resources of the research and development centre belind them, could do the sort of work they have been able to do during the war, of a class quite beyond the resources of all but a very few private concerns. The semi-skilled technical men would also benefit in a way abont to be described.

Radio Cabinets

Thus far we have produced a range of radio and television chassis. This is all that some people want. Architects would like to build in radio as they do central heating and air-conditioning. With these standardised units constructed to a definite specification, they would know exactly where they stand. The private houscholder might be glad, if he is hard up, to buy the
bare chassis of a radio set ; or he might wish to put it into a cabinet of his own design or construction. However, the majority of people seem to consider a radio set as an article of turniture, and in a democratic country all tastes must be considered. The difficulty is surmounted very casily. A panel of designers would be employed to produce a range of cabinet designs for each of the chassis, ranging from a simple box to a fairly elaborate radiogramophone. These cabinets would also be standardised in construction, dimensions, materials; but they would be supplied by the cabinet-making industry direct to the dealers, thus avoiding a radio manufacturer's overhead charges. The customer would select his chassis and cabinet in the dealer's shop, and there the two would be fitted together.

The Dealer's Part

The dealer must be the essential link between factory and consuiner. He must be competent to install and service the equipment, and have financial stability. He will have to employ certified service-men who are paid a salary commensurate with their qualifications. He will have premises situated to meet consumer demand and servicing. This, no doubt, sounds idealistic; but the shopkeeper has a dignified and honourable place in the community. He is not only a servant of the public, but ought also to be their adviser. 13y lifting the dealer ontside the ordinary conception of a parasitic middleman, he acquires new dignity and selfreliance, but he must at the same time give the service which this increased prestige demands. A nation-wide network of radio dealers of this type would provid. gool employment for thousands of semi-skilled technical men discharged from the armed forces, whose future is otherwise not-very promising.

Here, then, is a new plan for the production and marketing of broadcast sound and television receivers. Details cannot be considered here, but should be talked over by radio men in all walks of life. The plan does not depend on
the adoption of any particular form of political economy by the electorate at large, for the wonership of the research centre and the means of production and distribution is a matter of indifference.

But a plan las got to be produced. So far the radio industry has produced nothing beyond a vague statement about increasing production of radio receivers over the pre-war figures, and paying a lot of attention to television. The Bristol Institution of Radio Engineers has issued a report on technical matters and the training and employment of technical workers, which is of great interest to technicians; but it does not deal with the economic and political aspects of the industry. It is not claimed that the present scheme is even approximately perfect, but it is based on a knowledge of what has been or has not been done in the industry in the past, and a shrewd suspicion that unless some positive and progressive plan is put into force, the industry will, after the first few years of meeting normal public demand, finally drift into chaos and bankruptcy.

Neither this nor any other plan will ever make progress or be adopted until organised effort by intelligent people is made. And so the matter is left for the consideration of the technical workers of the industry, who, the writer hopes, will take action on what he has put down in this contribution.

OUR COVER

ASELECTION of Osram highpower valves, ranging from 12-kW to $150-\mathrm{kW}$ anode dissipation, forms the subject of this month's cover illustration. The group includes water-cooled rectifiers with binocular anodes, an air-cooledanode transmitting triode arranged for either convection or forced air cooling, and an air-cooled-anode mercury rectifier for an output up to 12 amps.

POSTAL TUITION

ASERIES of postal courses has been instituted by the Dundee Wireless College, 7, Airlie Place, Dundee. The courses are planned for those proposing to sit for the P.M.G. Ist and 2nd Class Certificates and for the Civil Air Licence; there is also a course in radio engineering and servicing.

VALVES IN THE SERVICES

Type Designations and Their Commercial Equivalents

(Information supplied by The Inter-Service Technical Valve Committee)

Abstract

Many readers, both inside and outside the Services, who are concerned with the use of valves marked with Service names, would like to know the commercial types on which the Service types were based. The following tables give this information. The first column shows the Service names, A . . . being an Army type, N . . . a Naval type, V . . . an Air Force type, and CV . . . a common Service type. Since 1941 all valves adopted by the Services have been given " CV " titles, and later all the old A. . ., N . . ., and V . . . valves were brought into this system to eliminate overiapping. However, as large stocks of valves marked with the old Service type designations still exist and numerous equipments are marked with those names, they are made the basis of the arrangement in the first column.

A warning should be given that strict equivalence between the Service type and the given commercial type must not be assumed, as the specification for the Service valve may require selection either for electrical or mechanical requirements or both.

Original Service Name	Current Tltle	Other Service Names	$\begin{gathered} \text { Commercial } \\ \text { Type } \end{gathered}$
ADI	CV1314		DLS10
ARDD1	CV1300		10D1
ARDD3	CV1301		D63, 6H6G
ARDD5	CV1054	VR54	EB34
ARD2	CV1078	VR78	D1
ARD4	CV1302		D42
ARH1	CV1280	NR67	X64
ARPI	CV1118	NR39, VR118	PT2, KT2
ARP2	CV1320		SP2
ARP3	CV1321		9 D 2
ARP4	CV1322		SP210
ARP5	CV1323		VP2
ARP6	CV1324		SP4
ARP7	CV1325		42MPT
ARP8	CV1326		AC4/Pen
ARP9	CV1327		Pen1340
ARP9A	CV1328		7D8S
ARP10	CV1329		APP4G*
ARPll	CV1330		TSP4
ARP12	CV1331		VP23
ARP13	CV1332		$210 \mathrm{VPT}, \mathrm{VP} 21$
ARP14	CV1333		22011 T
ARP15	CV1195	NR86	KTW63
ARP16	CV1074	N1283, VT74	KTZ63
ARP17	CV1186	NR85	KT63, 6F6G
ARP18	CV1334		KT24
ARP19	CV1335		SP41
ARP20	CV1336		SP'42
ARP21	CV1192	NR79	Z62
ARP22	CV1337		1161'en
ARP23	CV1124	NR70, VR124	MS/Pen
ARP24	CV1338		220 VPT
ARP25	CV1181	NR59	KT41
A 18 P 26	CV1340		KT44 (mod)
ARP93	CV1341		MSP4.
ARP34	CV1053	VR:53	EF39 -
ARP35	CV1091	VR91	EF50
ARP36	CV1065	VR65	SP41 (mod)
ARP37	CV1342		QP25
ARP38	CV1343		KTZ73 (mod)
ARS6	CV1317		S625
ARS7	CV1318		$\begin{aligned} & \text { VS24, PM12M, } \\ & \text { S215VM } \end{aligned}$
ARS8 ARTH2	CV1319 CV1347		$\begin{aligned} & \text { VS2 } \\ & \text { ECH35 } \end{aligned}$

Original Service Name	Current Title	Other Service Names	Commerclal Type
ARTP1	CV1344		TP22
ARTP2	CV1345		TP25
AR4	CV1303		HL210A
AR5	CV1166	NR42	LP2
AR6	CV1304		LP2
AR7	CV1109	NR55, VR109 and A	4DI
AR8	CV1306		HL231)]
AR9	CV1307		210LF
AR10	CV1308		L21DD
AR11	CV1309		4019B
AR12	CV1310	-	4020A
AR13	CV1311		4022AR
AR14	CV1312		220RC
AR15	CV1313		220LF
AR16	CV1032	VR32	220B
AR17	CV1037	NR31, VR37	MH4
AR20	CV1316		4021 B
AR21	CV1055	NR48, VR55	EBC33
ATP4	CV1366		V248A
ATṖ	CV1367		V245
ATP7	CV1368		V226
ATP10	CV1369		4061A
ATP35	CV1370		PV1-35
ATP75	CV1371		PZ1-75, SW75Pen
ATP100	CV1372		4069A
ATP600	CV1373		PY3-80
ATS25	CV1374	-	807
ATS70	CV1365		4282BZ
ATS250	CV1357		SG250
AT15	CV2845		LS5
AT16	CV2846		LS5B
AT20	CV1361		MZ05-20
AT35	CV1025	VT25	DET25
AT75	CV1222	NT39	ACT6
AT20013	CV1363		DET16
AU1	CV1264	NU12	FW4-500
AU2	CV1349		RG5-500, 4064A
AU3A	CV1039	NU17, VU39	$\begin{aligned} & \text { MU12/14, UUS, } \\ & \text { IW4, 44IU } \end{aligned}$
AU4	CV1113	NU18, VU113	U17
AU5	CV1111	VU111	V1907
AUB	CV1072	VU72	$\begin{aligned} & \text { GU50, MU4250, } \\ & \text { RG1/240 } \end{aligned}$

Original Service Name	Current Title	Other Service Names	Commercial Type	Original Service Name	Current Title	Other Service Names	$\underset{\text { Type }}{\text { Commercial }}$
AU7	(\%) 13 B		ESU30	NR41	clios:	VR83	210 VI 'T, V'121
AU8	civesm		U22	NR42	CV1166	AR5	LP2
AU12	(VV8853		U15, IRZ1-250	NR43	CV1167		PM24A
AW2	CV1070	VS70	7475	NR44	CV1168		ACO44, PX4
AW3	CV1110	VS110	S130	NR45	CV1169		VMP4G
AW4	CV1068	VS68	STV280/40	NR46	CV1170		D41
AW5	CV1359		ME41	N1247	CV1040	VR40	PX25, DO24,
AW6	CV1077	VI77	EM31				PP5/400 EBC33
CV5	CV5		GU21 ${ }_{\text {(special) }}$	NR48	CV1055 CV1056	$\begin{aligned} & \text { AR21, VR55 } \\ & \text { VR56 } \end{aligned}$	EBC33 EF36
CV9	CV9		AL60	NR50	CV1171		HAI, AT4, A40
CV18	CV18		RK34	NR51	CV1172		VP4A
CV19	CV19		EHTI	NR52	CV1173		354 V
CV24	CV24		HL41	NR53	CV1174		
CV25	CV25		4242A				PentVA,
CV26	CV26		813				AC/Pen
CV27	CV27		4357A	NR54	CV1175		ZA1, AP4
CV28	CV28		ACT9	NR55	CV1109	AR7, VR109	4D1
CV30	CV30		4270A			and A	
CV31	CV31	-	U20	NR56	CV1178		DA30, DO30
CV33	CV33		4077A	NR57	CV1179		TT4 V312
CV34	CV34		MR10	NR58 NR59	CV1180.		V312
CV45	CV45		S130 (mod)	NR59	CV1181		$\underset{\mathrm{H} 42}{ }$
CV49	CV49		3B/501A	NR60	CV1182		H42 W42
CV65	CV65		Pen25	NR61	CV1183		W42
CV66	CV66		RL37 ${ }^{\text {" }}$	NR62	CV1184		A373 KTW61
CV71	CV71 CV75		"Osglim" 4313C	NR64 NR65	CV1281	-	KTW61
CV84	CV84		313/102B				MSP4
CV93	CV93	,	V625	NR66	CV1187		1)41
CV152	CV152		GU21	NR67	CV1280	ARHI	X64
CV173	CV173		1)DR2	NR68	CV587		DH63, 6Q7G
CV181	CV181		ECC32	NR69	CV1103	V1103	Y63
CV185	CV185		PM202	NR70	CV1124	ARP23, VR124	MS/Pen
CV187	CV187		U19	NR71	CV1129	VR129	MS/I'en'T
CV190	CV190		DLS10	NR72	CV1188		N43
CV207	CV207		AC/P4	NR73	CV1285		ECC31
CV216	CV216		VR150/30	NR74	CV1189		AC61'en
CV225	CV225		ACTI 7	NR75	CV1190		AC/P4
CV235	CV235		U23	NR76	CV1191		KTZ41
CV242	CV242		GS18, CMG25	NR77	CVI286		EL35
CV243	CV243		4045A	NR78	CV581	6C:5G	6C5G
CV244	CV244		4046A	NR79	CVI192	AR1'21	Z62
CV245	CV245		43281)	NR81	CV1941	6K74	6K7G
CV285	CV285		VA35	NR82	CV1193		X65
NGT1 NGT2	CV1141		GIDT4C GTIC	NR83 NR84	CV1074	ARP16, V'T74	KTZ63 X41
NGT2 NGT3	CV1128	VGT128	GT1C	NR84 $\mathrm{NR85}$	CVI194 CVII86		X41 KT63, 6F6G
NGT3	CV1142		MR75	NR85 NR86	CVI186 CVII9.	ARP17 ARP15	KT63, 6F6G KTLV63
NGT4 NGT5	CV1143		GT1A	NR86 NR87	CV119.	ARPI5	KTV63 ACslenll)
NGT6	CV1145		BT9A	NR88	CV1197		RLI8
NGT7	CV1147		BT35	NR94	CV1198		AC/14
NGT9	CV1149		BT41	NR95	CV1502	VR502	KT33
NR15	CV1151			NSI	CV1069	Vs69	STV280/80
NR16	CV1153		PM254	NS3	('V120)		202
NR16A	CV1154		PM254	NS4	CV1201		4317
NR18	CV1156		DEQ	NS5	CVI202		304
NR22	CV1158		S410, PMI4	NT13	CV'2788		P610
NR23	CV1159		S410, PM14	NT18	CV1206		1)060, 1)A60
NR26	CV1038	VR38	MHL4	NT20	CV1208		1'625, PM256 [1100, MZ1-100
NR27	CV1160	VR19	104 V 2151	NT36 NT37	CV1219		DA100, MZ1-100
NR31	CV1037	AR17, VR37	MH4	NT38	CV1293		SW75Pen,
NR35	CV1163		PM2BA				PZ1-75, PT6 ACT6
N1337	CV1164		MS4, MSIPen (mod)	NT39 NT40	CV1222 CV1223	AT75	ACT6 1)ET5
NR38	CV1165		VMS4, MVSPen	NT8	CV1288		1)ET12, TY1-50
NR39	CV1118	ARP1, VR118	$\begin{gathered} \text { (mod) } \\ \text { PT2. KT2 } \end{gathered}$	NT62	CV1237 CV1240		$\begin{aligned} & \text { PM24D } \\ & \text { PZ1-35 } \end{aligned}$

Original Service Name	Current Title	Other Service Names	Commercial Type
NT82	CV'1246		1’2
NT87	CV'1250		4279 A
NT92	CV1252		4212 E
NU5	CV1261		RX3-120
NU12	CV1264	AOI	FW4-500
NU13	CV1265		U15, KZ1-250
NU15	CV1267		U4020
NU17	CV1039	AU3A, VU39	$\begin{aligned} & \text { MU12/14, UU5, } \\ & \text { IW4,441U } \end{aligned}$
NU18	CV1113	AU4, VUll3	U17
NU20	CV1268		U50
NU31	CV1279		MU2
NU33	CV129)		SU2150A
NU34	CV1134		HVR2
'G'121	CV1121		T41
VGT128	CV1128	NGT2	GTIC
$\checkmark 177$	CV1077	AW6	EM31
V1103	CVI103	N1269	Y63
VR18	CViols		215SG
YR19	CV1019	NR28	215 P
VR22	CW1022		2201] ${ }^{\text {a }}$
VR28	CV1028		220\SG
VR32	CV1032	AR16	220 B
VR35	CY1035		Q121
VR37	CVI0:37	NP31, AR17	$\cdots \mathrm{MH}$
V1238	CV1038	NR26	MHL4
VR4(i)	CW1040	NR47	PX25, I) 124 , गP5/40
VR41	cl1041		PM12N
VR43	CV1043		2101 G
VR44	CV1044		210 DIT
VR49	CV 1049		2108 PT
VR53	CV10:3	ARP34	EF39
VR54	CV1054	ARD) 5	EB34
VR55	CV1055	NR48, AR21	EBC33
VR56	CV1056	NR49	EF36
VR57	CV1057		EK32
VR59	CV1059		11A2, 955, 4671
VR65.	CV1065	ARP36	Sl'tl (mod)
VR65A	CV1574		$S^{\prime} 41$
VR66	CVI066		P41 (mod)
V1267	CV1067		L63
VR78	CV1078	AlRD2	111
VR82	CV1082		220 Tl
VR83	CV1083	NR+1	$220 \mathrm{VPT}, ~ \ 1321$
VR91	CV1091	AR1'35 -	EFO\%
VR92	CVIose		EAD̃)
VR95	CV1085		ZA2, 054, 4672
YR99	CV1099		X 66
VR99A	CV1581		E(C1355, E:1341
VRIoro	CVIlow		KTW62
VRI01	CV1111		MHLIJ6
VRIO2	CV1102	,	BL63
VR106	CV1106		912
VR107	CVI107		1.1)2
VR108	('Vllos		8 IL 2
VRl109	CV1103	NR55, AR7	411
VR116	CV1116		V872
VR117	CW117		4MTI,
VR118	CV1118	NR39, ARP1	1'T2, KT2
VRI19	CV1119		DDI,
VR122	CV1122		41×10
VR124	CV1124	NR70, ARP23	Ms/p'en
VR125	CVI125		Ms/PenB
VR126	C11126		$4 \mathrm{SH}$
VR129	CV1129	NR71	MS/PenT
VR130	CV1130		11L23
V12135	CV1135		E1148
VR136	CV'1136		RL, 7

Original Service Name	Current Title	Other Service Names	Commerclal Type
V'R137	CV1137		RLI6
VR502	CV1502	NR95	KT32
VR503	CV1503		KT33C
V12505	CV1505		MH41
Vs68	CV1068	AlV4	STV280/40
VS69	CV1069	Nsi	STV280/80
Vs70	CV1070	AW2	7475
VSIIO	CV1110	AW3	S130
VT20	CV1020		220 P
VT23	CV1023		230×1
VT25	CV1025	AT35	DET25
VT31	CV1031		SG250
VT34	CV1034		DET3
VT45	CV1045		X56
VT46	CV1046		1 T 25 H
VT47	CV 1047		TZO5-20,
VT50	CV1050		HL2K
V「51	CV1051		Pen220A
VT52	CV1052	-	EL32
VT58	CV1058		E960
VT60	CV1060		807
V'T61	CV1061		4074A, DET19, RK34
Vr6iA	CVI573		TVO3-10 (mod)
VT62	CV1062		DET12, TY1-50
VT73	CV1073		H63
VT74	CN1074	NR88, ARP16	KTZ63
VT75	CV1075		KT66
VT75.	CV1576		$\mathbf{K T 4} \mathbf{T}$
VT75 B	CW1577		KT44
VT76	CV1076		DA41, TZ40
VT79	CV1079		KT8
VT80	CV1080		4307A
V'r81	CV1081		4052A
VT88	CV1088		832
VT96	CV1096		5B/502A
VT104	CV1104		PT15
V「105	CV1105		ML6
VT114	CV1114		E1024
Vr127	cl1127		Pen46
VT506	CV1506		5C/450A
VU39	CV1039	NU17, AU3A	MU12/14, UU5, IW4, 44IU
VU71	CY'1071		U52
V'72	CV1072	AU6	$\begin{aligned} & \text { GU50, RGI- } \\ & 240, \mathrm{MU}+250 \end{aligned}$
V'II	CWH11	AU5	V1907
VU13	CV1113	NU18, AU4	U17
VU134	CV1134	NU34	HVR2
VU514	CV1504		V1901
VL508	CV1508		V1913

CULTIVATED CRYSTALS

DUE to the present difficulty in obtaining natural quartz in Switzerland, the firm of Brown-Boveri, of Baden, are "growing" artificial piezo-electric crystals. The manufacturing process used was developed by Prof. Scherrer, of the Swiss Federal Institute of Technology. It is stated that the artificial crystals differ only slightly in their properties from those of natural quartz.

Another development of the Swiss firm, described in the Brown-Boveri Review, relates to the "Turbator" valve, designed for the generation of centimetre wavelengths. Formerly, the output frequency was fixed solely by the internal valve characteristics, but.means have now been devised for introducing variable external tuning by a Lecher wire system.

ARMY SET - Type R107

Communications Receiver, Embodying Variable Selectivity, High Sensitivity and Covering a Wave-band of $1.2 \mathrm{Mc} / \mathrm{s}$ to $17.5 \mathrm{Mc} / \mathrm{s}$

ALTHOUGH much Army wircless equipment is of a highly specialised kind, some of the apparatus represents an obvious clevelopment from civilian prototypes, and so is of much more general interest. A good example in this category is the Type R107, one of the Army's best communications receivers.

Referring to its circuit diagram reproduced here it will be seen that eight valves are used, they perform the following functions. V_{1} is a signal-frequency RF amplifier which is coupled to a frequency changing valve $V=$ by a pair of link-coupled tuned circuits. There is a separate local oscillator valve V'3 and then come two IF amplifiers V_{4} and V5. These are followed by a duo-diode-triode V'7, one diode of which functions as a detector with its companion dionle pro-
viding delayed AVC and the triocle section giving a stage of AF amplification. The valve V6 is a beat-frequency oscillator for CW reception and, finally, there is a low-power triode output stage in the form of the triode section of another duo-diode-triode valve V8. Outside this receiving claain is one other valve V9, a full-wave rectifier for H'T supply, which will be found in the power unit.

The first interesting feature one notices is the pair of link coupled tuned IRF circuits, which form the coupling between the RF amplifier V 'i and the frequency changer V2. Their function is to give good second-channel discriminatory powers to the circuit

> The front panel of the Rio7 receiver carries no fewer than fourteen controls. The annotation is the same as used on the circuit diagram.
as at the higher signal frequencies a total of two tuned circuits only ahcad of the frequency changer does not provide a very high ratio of signal to second channel interference, even with an IF ()f $465 \mathrm{kc} / \mathrm{s}$.

The IF amplificr next claims attention if only for the imposing array of the eight tuned circuits it contains. A single pair couples the frequency changer to the first II: amplifier V_{4}, but two pairs in tandem couple V_{4} to V_{5}, the second IF amplifier. Coupling between the secondary circuit of one and the primary circuit of the next is, in this case, by means of a $2.2 \mu \mu \mathrm{~F}$ capacitor C_{44}.

The selectivity provided by this chain of circuits is such that at $3 \mathrm{kc} / \mathrm{s}$ off resonance the signal attenuation is about 6 db . This is quite satisfactory for modulated CW morse transmissions and tolerable for R / T where inter-

Army Set-Type R107-

ference is very bad, but under less stringent conditions a broadening of the IF response will have its advantages. This also can be done, provision being made for opening out the IF response to a bandwidth of $\pm 7.5 \mathrm{kc} / \mathrm{s}$.

This variable selectivity feature is obtained by augmenting the normal inductive coupling in the IF transformers by inserting capacity coupling in the lowpotential ends of the first three transformers. The capacitors used for this purpose are $\mathrm{C}_{31}, \mathrm{C}_{42}$ and C.50, each of $0.05 \mu \mathrm{~F}$ capacity and - the necessary circuit rearrangement is effected by the three ganged-switches So, Sio and SII.

When interference is really bad and still higher selectivity is needed (it can be utilised only for CW transmissions) an audio filter tuned to $900 \mathrm{c} / \mathrm{s}$ and having a bandwidth of $\pm 150 \mathrm{c} / \mathrm{s}$ can be inserted between the penultimate and output valves, V'7 and V8,
giving a frequency coverage of $1.2 \mathrm{Mc} / \mathrm{s}$ to $17.5 \mathrm{Mc} / \mathrm{s}$, which in wavelength is 250 metres to I_{7} metres approximately. The individual coverages of these ranges are 1.2 to $3 \mathrm{Mc} / \mathrm{s}, 2.9$ to $7.25 \mathrm{Mc} / \mathrm{s}$ and 7 to $17.5 \mathrm{Mc} / \mathrm{s}$ respectively. Tuning is by a four-gang variable condenser, each section of which has a capacity of $300 \mu \mu \mathrm{~F}$. these being marked C6, CiI, Ci6 and C2I in the circuit. The latter is the oscillator tuning section.

Unit Construction

It might be advisable to explain that the circuit diagram given here has been much simplified. In actual fact the receiver is an assembly of three independent units interconnected by twelveway tag boards and the medley of leads so produced is most confusing when endeavouring to follow a circuit. These interconnections were accordingly omitted, as were two of the three sets of signal frequency coils in the RF intervalve coupling and
appropriate ones are brought into circuit by a three-way wavebandswitch which in reality is a ganged assembly consisting of the separate switches Si to S8 inclusive, plus those for shorting out the idle coils and not included in the diagram.

In the general outline of the function of the various stages in the set V2 was described as the frequency changer. Actually this function is shared by V_{2} and V_{3}, the former being the mixer, which in the early days of the superleterodyne was often, and with some justification, described as the first detector, while the latter is the local oscillator.

The locally generated oscillations are injected into the suppressor grid of V2 via C20. This grid, being joined to the earth line via the resistor R_{14}, receives a negative bias derived from the flow of cathode current through R12 and R13 in series, whereas the control grid gets its negative bias from the voltage drop across

by the linked switches Si 3 and Si $_{4}$. Reverting now to the input end of the .receiver we see that there are three tuning ranges
in the oscillator circuit. All three coils are included, however, in the input circuit in order to emphasise their existence. The

Ri2 only. In this case the bias on the suppressor grid is about ten times the control grid bias. Switch S_{7}, which is embodied
in the waveband switch, is used to bring an extra anode resistance R8 into circuit, for limiting the amplitude of oscillations on the lowest frequency range.

Although there is a small loudspeaker built into the set its use is generally limited to standby occasions, normal traffic working being carried out with headphones. These are plugged into the jack J2-which, incidentally, is in duplicate in the actual re ceiver.

As the set is primarily designed for headphone reception a signal strength limiter, described as a " crash" limiter, and comprising the two metal rectifiers D_{I} and D2, is included. Switch $\mathrm{Si}_{7} 7$ brings it into use when needed.

Provision for remote control via the socket SKi tends to complicate the output end of the receiver, particularly as it also brings "side tone" from the transmitter into the receiver's telephone circuit for the purpose of monitoring the transmission.

COMPONENT VALUES

Value	Circuit Positions
22μ	C44
20	C1
25	(Pre-set) C3, C4, C5, C14, C15, C23
	(Variable) C2
80	C22
100	C64, C66, C70
200	C7, C20, C61, $\mathrm{C62}$
300	(Variable ganged) C6, C11, C16, C21
750 0.0014%	
$0.001 \mu \mathrm{~F}$ 0.005	
0.005	C13, C63, C71, C75, C76, C77, C85
0.05	$\mathrm{C} 8, \mathrm{C} 9, \mathrm{C} 10, \mathrm{C} 12, \mathrm{C} 17, \mathrm{C} 18, \mathrm{C} 19, \mathrm{C}_{31}$
0.1	C125, C33, C34, C35, C38, C52, C53 C54, C55, C67, C68, C60, C74
1.0	C78, C79, C8\%
4.0	C86
8.0	C83, C84

100	ohins	R40
150	,'	R42, R43
300	,	R3
400	"	R12
500	,	R21, R23, R38
1,000	"	R31
3,000	"	R5, R10, R15, R10,R25, R32
5,000	,"	R6, R13, R20, R26
15,000	''	R4l
20,000	"	R2, R34
25,000	"	R4, R7, R10
30,010	'	R30
50,000	,	R9, R14, R20
80,000	"	R8, R11
100,000	"	R18, R24, R37
250,000	"	R1, R17, R22, R28, R36
500,000	,	R27, R35
500	"	VR3
4,000	"	VR1
500,000	"	VR?

output valve grid leak, R_{37}, to earth.

A combined AC/DC power unit embodied in the set supplies all working voltages. DC is derived from a 12 -volt accumulator battery and either AC or DC operation is obtainable simply by throwing over the switch Si8 to the appropriate position and, of course, connecting up to the right form of supply. No harm can befall the set if the switch is thrown to DC with an $A C$ input and vice versa.

Vibraior HT Supply

Whether battery or AC operated HT for the valves is obtained from an orthodox rectifier circuit fitted with a $6 \mathrm{X}_{5} \mathrm{G}$ full-wave rectifying valve V9 and the associated transformer windings MT_{4} and MT5. When battery operated the transformer gets its input via the primary winding MTI which is energised by the vibrator unit VB. The valves (with the exception of V_{9}) being

Army Set-Type R107-

connected in a combination of series and parallel, then draw their filament supply from the battery via a "mush" filter consisting of the choke Ch_{5} and capacitor C 84 .

With AC operation the filament supply comes from a 12 -volt AC winding, MT2, on the transformer, while another winding, namely MT3, now becomes the primary. Under both conditions of operation V9 gets its filament supply from winding the MT_{4} on ${ }^{\text {. }}$ the transformer.

The arrangement of the vibrator circuit is of interest as its contacts do not make and break the DC supply, but they merely serve to
short-circuit first one then the other half of the primary winding, both of which are in parallel so far as the DC supply is concerned. As there is no abrupt interruption of relatively heavy currents, which in vibrator circuits produce very high peak voltages in the secondary circuit of the transformer, very simple filtering suffices in this case. The small current needed to energise the operating coil of the vibrator is, of course, rhythmically interrupted, but its magnitude is too small to produce any troublesome surges.

The only filtering required for this unit is provided by the choke Ch_{4}, capacitors C_{77} and $\mathrm{C}_{7} 8$ assisted by the suppressors $\mathrm{R}_{4}{ }^{2}$
and R_{43}. Any residue that might get into the rectifier circuit is taken care of by Ch 6 and C 85 .

Provision is made for monitoring the various stages in the set by measuring the voltages dropped across resistors $\mathrm{R}_{5}, \mathrm{R}_{10}, \mathrm{R}_{15}$, etc., to R39, which carry the HT feed currents of the various valves. All these test points, which are marked T in the circuit, are brought out to a small test panel on the front of the set.

As the annotated photograph of the set shows an extraordinary number of controls are assembled on the panel. These include controls for RF and for AF gain, as well as all the switches except Si8.

DEFINITION IN THE CINEMA Assessment of Optical Standards for Television

SINCE the question has recently been raised as to the number of scanning lines required in television to produce a picture having the same standard of definition as the picture projected on the cinema screen it is worth while first to try to assess that standard and express it in terms of lines per picture.

For the purpose of calculation the dimensions of the film picture are taken as o.6ooin. $\times 0.825 \mathrm{in}$. We have to decide how far definition is affected by (1) the film, (2) the camera, (3) photographic technique, (4) the taking lens, (5) processing, (6) the projector and (7) the projection lens.
.(1) The Film.-Three films are mentioned in the Kodak Data Book as suitable for cinematography, viz., a normal very high speed emulsion with a resolving power of 30 lines per mm .; i.e., 450 horizontal lines to the picture; a new very high speed emulsion of moderate contrast with a resolution of 45 lines per mm. ; i.e., 675 lines per picture ; and the normal high-speed emulsion of fairly high contrast which resolves 50 lines per mm, or 750 lines per picture.

By H. W. LEE, B.A., F.Inst.P. (Scophony Limited)

(2) The Camera.-No data are available as to the standard of workmanship. Perforations have a tolerance of 0.0004 in . in size and 0.0005 in . in pitch. It would thus seem that about o.ooiin. error is considered allowable in all, and probably a similar standard is aimed at in manufacture. This demands a precision of a few tenthousandths of an inch in the individual parts of the film transport mechanism and is attainable in precisioneengineering. This gives 600 lines per picture.
(3) Photographic Technique.This includes possible blurring of the image through variations in focusing and the requirements of field depth. It will be supposed that a $2 \mathrm{in} . \mathrm{f} / 2$ lens is used in the camera. Experience shows that . it is impossible to be sure of focus closer than 0.002 in. even with the refined tools of the opticians testing room. It is unlikely that precision in the studio will be high. An error in focus of 0.002 in . is thus possible. At f / z this produces a blurr of o.oorin., which is I/600 picture height.

A guide to the limit set by depth of focus can be obtained by considering a close-up of a head nearly filling the screen. The reduction will be about $1 / 20$. Now a depth of $\pm \mathrm{in}$. on either side of the part upon which attention is focused (usually the eyes) must be allowed without the image becoming perceptibly blurred. Therefore the depth of focus will be $\pm \mathrm{I} / 40 \mathrm{oin}$. at the filin; at $\mathrm{f} / 2$ a blurr of 1 / 8ooin. is produced. If this is tolerable, so is a standard of 480 lines.
(4) The Taking Lens.-No lens is perfect and generally accepted figures for the usual errors will be quoted for high quality cinema lenses.
(a) Axial. The definition can be spoiled by axial chromatic and spherical aberrations; even though these are said to be "corrected" there are always residuals which cannot be entirely removed with the glasses at present available. In a lens for spherical aberration it will be found that if zones are isolated they will each give a slightly different focus. This variation will in a good lens amount to 0.004 in . per inch focal length; i.e., it will be o.008in. in
a 2 in. lens $f / 2$ and will occur at a zone having a diameter of about f/3. so that a point is remdered by this zone as a ring of diameter 0.0027 in . if observation is made at the focus for central rays. Now this is the worst zone and the eye in focusing is conscious of the effect of all zones and, so to speak, integrates the effect and chooses not the focus for central rays but one where the total blurring is least. The consequence is that the resulting blur is only half that computed for the worst zone ; i.e., will amount to 0.0013 in . This divided into o.6in. gives 450 -line definition.

Chromatic aberration is smaller but will add to the size of the blur and so lower the definition slightly from this figure.
(b) Extra-axial.-Lenses have likewise residuals of astigmatism and field curvature by which the foci for points off the axis fall outside the plane through the axial focus. A 2 in . lens has a field of ± 15 deg. on the film area, and within this angle departure from the focal plane may amount to 0.5 per cent. of the focal length ; i.e., to o.oIin. with a sin. lens. The aperture for oblique pencils is substantially less than for axial pencils, owing to cut off by the rims of the lenses, so that the aperture will be about $\mathrm{f} / 3$ at the edge of the field; consequently the image of a point will amount to o.003in. This is zoo-line definition, but again it is possible to choose the focal plane so as to give the best results throughout the field and an overall definition of perhaps 400 lines may be looked for.

It may be argued that the focal plane has already been chosen to get the best axial definition and that it is not legitimate to posturlate a fresh choice dictated by extra-axial imagery. The answer to this is that the lest lenses are so designed that the requirements for best axial and oblique image points are met by the same choice of focus.
(5) Processing.-Film shrinkage and the effect of processing have been investigated and certainly may lead to impairment of definition, but these defects can be largely guarded against by careful treatment and storage.
(6) The Projector.-What was said about the camera applies equally to the projector, and it is probable that the standard of workmanship aims at a possible 600-line definition.
(7) The Projection Lens.-This is of an entirely different type from that of the taking lens and is of greater focal length. A 4 in. f/2 may be considered typical. Usually the axial definition is better and the oblique definition worse than that of the camera lens. The definition of axial points will therefore not suffer much on projection; the field of this type of lens is, however, far from flat and may have a divergence from flatness of as much as o.orin. in a good lens, giving an out-of-focus blur which is equivalent to $0.005 i n$. on the film. This is only 120 -line definition. Even if central definition is sacrificed somewhat, that at the corners can hardly exceed a $200-$ line standard. At the side of the picture it may be 50 per cent. better; i.e., 300 line. With a longer focus lens definition will, of course, be somewhat better.

General Considerations.-These standards may seem low, but need not cause surprise. It is generally considered that the eye accepts an image as sharp if the blur does not exceed one minute of arc at the eye. The front of the balcony may be taken as being the best
point of view in the cinema and this may be half way between the projector and screen, consequently the latter subtends twice the angle at the spectator that the film does at the projector. The standard of definition for the projection lens then should be that blur on the film does not exceed half a minute of arc (an angle of I in 7,000) and with a 4 in . lens blur should then be restricted to 4/7,000in. The " line" standard is thus $0.6 \div 4 / 7,000$; i.e., about r,ooo. With a jin. projection lens a blur of $1 / 1,000$ could be tolerated, which is 600 lines definition. This physiological tolerance is based on laboratory experiments with a stationary test object of black and white lines. In the cinema the objects on the screen are usually moving, are not geometric in shape and rarely have black and white contrast. Thus a lower standard could be tolerated in the cinema.

Conclusions.-A definition represented by 600 lines is probably the highest the eye could appreciate under the most exacting conditions, and this is probably within the range of resolution of the finest grain film that is used. The conditions under which the final image is produced on the screen do not suggest that definition there ever exceeds a $400-$ to 500 -line standard in the centre and 300 at the edges, and it may at times be lower.

NIGERIAN

SERVICE.The maintenance of the receivers in public buildings and administrative offices in Nigeria is undertaken by the Radio Section of the Public Relations Office. C. A. Huber, a Swiss engineer, who is in charge of the Section, is seen in the workshop in Lagos.
∞

SOLAR ECLIPSE OBSERVATIONS

 Effects on the lonisation of the E and F layersDURING the eclipse of the sun on Monday, July 9th last, a series of radio observations that had been in progress for several days reached their zenith. These observations were undertaken by civil and military radio research organisations throughout the British Isles under the direction of the Department of Scientific and Industrial Research.

When the results have been carefully studied and correlated it is hopefully expected that much new knowledge will emerge regarding the composition and characteristics of the E and F ionised layers in the upper atmosphere, which play such a vital part in long-distance radio communication.

Both ordinary transmissions and reflecting systems were employed, the former to study the effects produced at a distance by changes in ionisation and the latter to record and measure changes in density, height and absorption of the respective layers, before, during and after the actual period of the eclipse.

Previous observations had shown that the lower E layer is caused by ultra-violet light emanations, and during previous eclipse
observations radio fadeouts have invariably coincided with the optical eclipse.

A definite pronouncement on the composition of the F layer may be forthcoming when the results of the observations carried out by the ionosphere research section of the Kadio Research Board at their Datchet experimental station are analysed and correlated. This entails the careful study of many thousands of measurements and examination of hundreds of feet of photographic record, much of which was taken during the eclipse period.

Investigations of the E layer ionisation were made by one subsection using two pulse transmitters and by observing the nature of the reflected echoes. One transmitter operated on $2 \mathrm{Mc} / \mathrm{s}$, while the other was varied over the range 1.6 to $3.5 \mathrm{Mc} / \mathrm{s}$. These were manually controlled and visual observations made with a large cathode-ray tube. The work was mainly concerned with the absorption effects of the lower strata of this layer.

Investigations of the behaviour of the F layer were made by means of another pulse transmitter automatically sweeping over a fre-

Visual observations on propagation of radio signals on $100 \mathrm{Mc} / \mathrm{s}$ were made during the eclipse with this equipment.
quency range of $0.5 \mathrm{Mc} / \mathrm{s}$ to 8 Mc / s and recording on a moving photographic film the echoes reflected from the E and F layers as well as from any patches of high ionisation in or outside the confines of the layers. It is interesting that the paths of meteorites through the ionised layers are clearly discernible.

Elsewhere a continuous record was made on a short-wave signal transmitted from the north of England. The recordings showed a gradual falling-off in signal strength as the eclipse progressed and during the maximum period it was almost inaudible, only to return slowly as the shadow of the moon receded. The radio eclipse did not coincide exactly in time with the optical eclipse, and indeed this was not expected, but the radio fade-out did occur at the anticipated time.

Sun-spot Disturbance

Observations were also made on signals from Canada and other distant countries on, or close to, the path of totality. Direction-finding technique was employed in order to trace the actual path of the signals.

At one period it was feared that sunspot eruptions, which caused some disturbance in the ionised layers, might obscure the effects of the eclipse. Fortunately these fears were not substantiated.

Observations on the F layer are so far not very conclusive as although the critical frequency for the layer fell to a low one and then slowly increased to normal for the time of day and season there was also a change in the critical frequency some little time before the optical eclipse. This could conceivably have been due to a change in the layer's ionisation on the assumption that its composition was due to corpuscular emanations from the sun.

Possibly when all the observations from the many radio bodies engaged have been studied a definite pronouncement might be forthcoming on the actual composition of the F layer.

Brimar Valves operate to very close limits with complete reliability. "Peak performance" is an automatic result of their use. Although valves are still in short supply, you may be able to get the Brimar Valve you require.

$$
\begin{gathered}
\text { BRIMAR } \\
\text { vailves }
\end{gathered}
$$

- From minesri/a GIANT..

CHEAPER HEARING AIDS

 Should They be Sold by WirelessDealers?

By C. M. R. BALBI, MII.E.E.

THERE are indications that before long better and less expensive hearing aids will become available through the radio industry; the problems involved in distributing these instruments to the public are of interest to all concerned.

The question arises whether the wireless retailer should or should not handle these devices. It is obvious that widest scope for distribution is through the radio retail market. This will mean that at last the public will get their instruments and service at rockbottom prices, but the first thing the public will want to know is, if any harm can come to them by purchasing their instrument from an inexperienced person (I use this term deliberately to distinguish a radio dealer from a hearing aid salesman in a white coat practised in the art of mumitojumbo). The answer is given by the National Institute for the Deaf in a statement approved by the Medical Research Council which reads as follows:-
" There appears to be no clinical or experimental evidence that the continued use of a hearing aid causes any increase in existing deafness; nor, except in a few rare cases, does it improve or restore hearing. Nevertheless, the benefits from a satisfactory and appropriate instrument are very definite both to the patient and his friends."

That is hardly surprising; indeed, if the contrary were true, no person afflicted with deafness should use a telephone or listen to broadcasting without the consent of his medical adviser.

If matters are as simple as this, then why has the retailer not added such a profitable line to his business before? The reason is that the deaf quite naturally want to know what benefit an instru-
ment will give them before purchase. If the retailer was not prepared to give vague promises it meant that the intending purchaser had to be given a week or more home trial. This is expensive because an instrument after a home trial often looks second - hand and the margin of profit does not allow of such a costly procedure.

If, on the other hand, the m a n ufacturers could guarantee that a particular type of instrument would benefit a deaf person to a precisely stated degree, then the cost of selling a hearing aid would immediately be reduced to a level comparable with that of a radio receiver.

To make this possible an instrument has been designed which has been termed a "hearing aid predictor." The device is a very simple one and consists of a mic rophone, amplifier (battery or mains driven) and an earpiece so calibrated in db. that it will assess a patient's intelligibility loss.

The technical aspects involved in the calibration of the predictor can be obtained by reference to the I.E.E. Journal, vol. 91, part 3. page 67 . In brief, the reproduced sound in the earpiece is such that when the instrument is spoken to att a distance of about curve for two types of hearing aid, with sketch showing how the benefit derived from them may be simply assessed.

three feet with the pointer at zern the amplification is unity, so that to a person with normal hearing the loudness of reception would appear to be at the same level as if hearing the operator direct.

When a deaf person is being tested the operator would increase the amplification until the patient (also 3 ft . from the operator) indicated that the reception was at a comfortable level and appeared normal for the distance which separated them. A tone control is provided with base and top cut which is adjusted to suit the patient.
A short conversation between the operator and the patient quickly determines the degree of deafness concerned, and then the retailer can, by referring to the prediction curves provided and

Cheaper Hearing Aids-

guaranteed by the manufacturer, inform the patient what benefit he can expect from the use of the instrument he intends to purchase.

A typical prediction curve relating to two types of instrument is shown in the figure. If, for example; it was found that the patient's hearing loss was ' 15 db . then the retailer would be able to assert that he would benefit to the extent of 17 per cent. with instrument No. I, and 62 per cent. with instrument No. 2. In actual practice it is easier to explain the results by the diagram of an auditorium given below the curves. If the speaker can just be heard intelligibly at the back of the hall by a listener whose hearing is normal, then a deaf person with a $15-\mathrm{db}$. intelligibility loss can only hear intelligibly with his unaided ear in row A , but with instrument No. I he then has the choice of rows A to C , and with instrument No. 2 his choice is extended to rows A to G.

If, on the other hand, a patient was only $5-\mathrm{db}$. deaf, it can be seen that instrument No. i would be of no benefit at all; in fact he would be worse off.

"Difficult" Patients

It is well known that there are certain people, generally of ardvanced age, who although they can hear sounds easily, cannot distinguish words whatever the intensity level. The predictor, which is founded on an intelligibility basis, would immediately indicate that the patient was unsuitable for any form of hearing aid and thus ayoid needless disappointment to the patient and waste of time and expense to the vendor. The operator and the patient therefore know where they stand and the purchase can be made in the confidence that the associated prediction curve provided by the maker will be correct. The integrity or judgment of the vendor is therefore not involved and the system is likely to encourage the manufacturer to improve the performance of his instruments and not let this take second place to appearance, which has generally been regarded as the factor chiefly affecting its commercial success.

BOOK REVIEWS

Radio Service Test Gear. By W. H. Cazaly. Pp. 89; 46 diagrams. Published by Sir Isaac Pitman \& Sons, Pitman House, Parker Street, Kingsway, London, W.C.2. Price 6s.

THIS book is mainly a reprint of the eight articles published as a series during 1942 in Wireless World under the heading "Instruments." Each of the eight articles in that series constitutes a chapter in the book and they are preceded by an introductory chapter explaining the necessity for more precise information on the performance of a radio receiver than has been customary in the past.

It is quite rightly pointed out that such indefinite expressions as " loud," " powerful," and " mellow tone". possess no real meaning and any interpretation including, or excluding, the right one could be applied to them. But in order to obtain this precise information scientific measurements of performance must be made and to make them suitable apparatus is required. It is a description of this apparatus that fills the remaining eight chapters. The description is theoretical and not the constructional kind, for as the author says in his preface"Construction involves not only buying and assembling the right components, but adjustment and calibration of the instrument as a whole-and this is usually much more difficult than mere assembly and requires skill and knowledge that cannot be imparted either in a book of this nature or in correspondence." Thus the reader is fully forewarned and in the many circuits of test and measuring apparatus that follow there are few cases
where values have been assigned to the components. But construction of the apparatus would not be unduly difficult, as adequate references are given; moreover, calculating component values for any desired set of operating conditions is always valuable experience.

The book is a guide to the understanding of the basic principles of the design and operation of test gear, and having mastered these facts the reader will be in a far better position to use measuring apparatus intelligently, since knowing its limitations the impossible will not be expected. Moreover, this knowledge will prove invaluable in adapting apparatus for unusual test work, while familiarity with the circuit arrangement enables repairs to be carried out with greater confidence.
H. B. D.

Elektrische Schwingtöpfe und ihre Anwerdung in der Ultrakurzwel-len-Verstärkertechnik (Klystrons and their use in ultra-short-waye amplification.) By Alfred de Quervain ; pp. 88 with 47 figures. A.-G. Gebr. Leemann \& Co., Zürich. Price 6 Fr. (Swiss).
This is the result of two years' research at the Zürich Technical College. It goes very fully into the calculation of the losses and thus of the Q-factor of klystrons, also into the temperature coefficient and its compensation in order to keep the' resonant frequency constant. The methods of coupling klystrons and matching them to one another and to valves is discussed very fully. The wavelengths considered are usually from I to 2 metres. The thesis is well prepared and should appeal to anyone interested in klystrons. G.W.O.H.

[^0]
WHAT IS QUALITY CONTROL?

 Background for Wireless Technicians

 Background for Wireless Technicians}

WHAT A. P. Herbert calls "witch words" are popular because they relieve both the reader and the writer of the tedious task of trying to understand what is being talked about. In most of the shorter texts on "Quality Control " it is assumed that the reader has some basic knowledge of the subject and merely wants to know the rules and formulæ. In the remainder it is assumed that the reader does not want to know anything about quality control, but needs a sort of drill book which he can use blindly. This article is an attempt to give a background against which the detailed instructions will fall into an ordered scheme. It does not give instructions on how to apply quality control: for those, references 1 and 3 should be consulted. Reference 2, unfortunately, uses a different notation, and may confuse the student. One difficulty which the reader may find troublesome is the fact that almost all the literature is based on machine-shop practice and the application to radio problems is not immediately obvious. This is because the use in machine shops is much easier. There is, however, considerable scope for quality control in radio production, and some uses will be mentioned later.
Modern industry is based on the large-scale production of nominally identical articles. The guiding principle is that a product is not the work of one man, but is an assembly of parts each made by separate men or machines whose sole function is part-making. Indeed, even a single part may be the result of several processes each carried out in separate stages. For this procedure to be successful it is necessary that the parts should be accurately made, so that sets of parts drawn at random from a store should be capable of being assembled without much fitting work.

If parts are to be interchangeable, they must be made to close

By THOMAS RODDAM

tolerances. This means that careful inspection is necessary, and it is when inspection costs start to become a serious part of the whole cost of a part that quality control becomes important. Close tolerances may also mean the risk of a high proportion of scrapped parts, and the inspection process must be quick and efficient so that a machine which is making defective parts is spotted before it has made very many. The most elementary form of inspection involves the checking of every item. Checking may mean merely the use of gauges, or it may involve the measurement of a dimension with a micrometer or some other device which actually determines a value, rather than finding whether the value is within limits or not.

The first step taken by the statistician in simplifying testing procedure is to abandon 100 per cent. inspection and rely on samples.* If we want to know what electrical engineers think about the B.B.C. programmes we do not ask every engineer in the country: we seek out a sample, chosen at random. We might

Fig. I. A typical histogram.
take all members of the I.E.E. whose names begin with the letter R. As their names do not affect their listening habits, this would
give us a reasonable number of views' from engineers of all shapes and sizes, and we could predict the general engineer's view from this. Systems of this sort are well known, and their only defect is that the sampling may not be truly random. A poll on the merits of fox hunting taken at a point-to-point race meeting would give very different results from one taken at a performance of "Wozzeck." In sampling parts from a machine we must adopt a lucky-dip procedure. Tables have been published (reference 5) showing the number of items in a sample required to give the information needed about the whole batch. These samples may be quite large and the testing of the samples may still be expensive. Sampling is, however, the only way of dealing with parts which have been shuffled, such as parts made in another factory and delivered as a large batch. Sampling is less efficient than quality control, because one piece of information, the order in which things were made, has been thrown away. The taking of samples for quality control, where the process is being watched in time, should not be random and a sample of successive parts must be taken straight from the machines, to give the latest news. The engineering problem is, as always, that of getting a result which is just good enough with a minimum of effort. To do this in inspection it is imperative that all the information should be obtained from the smallest number of tests. Quality control is a method of squeezing the maximum amount of information out of test results with a minimum of delay.

Let us assume that we are concerned with the problem of ${ }_{\text {_part- }}$ ing-off a length of rod on an automatic machine. Ideally our

[^1]machine will cut off standard oneinch lengths, but in practice, when we measure the pieces, we find that some are 1 .ooin. long, some r.orin., some o.g9in., and

length
Fig. 2. Example of Gaussian distribution.
so on. If we take a number of pieces and measure them, wo can plot the diagram of Fig. I, which shows how many pieces of each length there are. Note that we only worry about the measurement to / / rooth of an inch. From this we can see that the machine is turning out pieces of length $1 \pm 0.05 \mathrm{in} .$, and that of the 200 pieces studied only 25 per cent. lie outside the limits $1.00 \pm 0.02 \mathrm{in}$. This plot is called a " histogram." If more pieces were measured more accurately, the histogram would tend towards the smooth curve of Fig. 2, which is a Gaussian or " normal" curve. This " normal" curve is very important in statistical work, and its properties have been closely studied.
If our machine was not parting off one-inch lengths, but grinding to one-inch diameter from a i.ot-in. bar, we might get the histogram of Fig. 3. This is known as a skew distribution. As this is rather inconvenient, as it does not obey the same laws as a " normal" distribution, something must be done. In Fig. 4, which is taken from BS600R:1942, we see that by plotting the average values of samples of 5 or 10 items we can get our results to " normalise " themselves. A histogram made up from a set of averages is always nearly Gaussian. The engineer making use of general rules for Gaussian distributions should always take the average of a
sample of four or more pieces. The original distribution is not then important.

We have now got some idea of what we are dealing with in our statistics. If our machine is behaving itself, it will go on churning out parts which if measured will simply magnify the histogram without altering its shape or position. We may get different numbers, but the next 200 in Fig. I will still have more parts at i.ooin. than anywhere else, and will still have only 2 or 3 per cent.

Fig. 3. Histogram showing skew distribution.
as far out as 0.95 in . or 1.05 in . When a system is behaving like this, it is said to be in " statistical control." Our object is to keep the system in "control." Of course, this is no good if the length should have a tolerance of ± 0.0 in. The controlled level must be good enough for the func-
producing at a controlled average of o.o8in. We shall start to get pieces as short as 0.ojin. The appearance of these is an indication that something has gone wrong. If a histogram is drawn it may be found that the shape of the bell-like smooth curve to which it tends is unaltered but that the whole thing has been shifted bodily sideways. The machine is still working as accurately as before, but it is now making the wrong thing and requires to be adjusted to bring the mean length back to its target value. Sometimes the centre of the histogram will not be shifted, but the flare of the bell will be wider. The machine is not working as accurately as it was before. The cure for this condition must be sought. In quality control charts, the first effect is indicated by the "chart for averages " showing loss of control ; the second condition is, shown by the "chart for range" showing loss of control. The charts give a clue to how the machine has gone wrong.

The detection of a loss of control by the charts and detailed instructions on how to prepare charts are given in references 1 and 3. The procedure is to plot the average value and range of the "quality" of a sample at intervals, and to investigate whenever either of these quantities falls outside lines marked as "Action Limits" on the charts. Just as a modulation control system can be arranged to flash a red light if

Fig. 4. Sampling from a skew distribution. (From BS6oo R : 1942.)
tion, but our data would be suitable for a spacer designed to have a tolerance of 0.07 in . Indeed, our machine is slightly too good!

Suppose now that for some reason the machine changes to
the signal level sent to a transmitter exceeds the prescribed value, so a point beyond the action limits on the control chart is a warning that the machine may be going wrong. The choice

What is Quality Control P-

of action limits requires care: I shall attempt an analogy.

If the reader will look at only the left-hand section of the curve of Fig. 2, he will see that this is

We plot the average value of our sample of 4,5 or io parts on a chart, taking samples once every 20 minutes, once an hour or once a day depending on the process. Theoretically I reading in 40 control chart SET UP

Fig. 5. Features of a control chart for controlling quality during production. (From BS 1008 : 1942.)
very similar to $\mathrm{I}_{\mathrm{a}}-\mathrm{E}_{q}$ curve for a valve. If we examine what happens at a given distance from the centre, we are doing something rather like noting the anode current for a given bias.

The action limit on this side of the curve defines the working point and the number of measurements beyond the action limit on the left corresponds to the " red lamp current." Moving the curve means that the working point is altered, and it is known that the greatest sensitivity of anode current to lias will be on the straight part of the slope. In statistical control we usually work near cutoff and the problem is rather like that of detecting a carrier in the presence of noise. The reason why the less sensitive position is chosen is that if we work at the cut-off, we shall not often get any false alarms.
In setting up a quality control system, therefore, we first of all determine the " control characteristic." Then we choose a "cutoff " level, which in the language used is called the 2 or level because it is the (average value) $\pm 2 \sigma$ where σ is the "standard deviation," a term which is the measure of the width of the bell.
should be above the upper cut-off and I in 40 below the lower cutoff. In practice the extremes of the Gaussian curve do not appear, for obviously there is no chance of our machine making 2 -in. pieces or $\frac{1}{2}-\mathrm{in}$. pieces unless it is hopelessly out of order. We can therefore safely regard any point outside the limits quoted as indications that the machine should recrive a closer inspection as it is starting to go wrong. Sometimes 3 ur limits are used as well. The chance of being outside these is only : in 1000, so that a point outside means there is almost certainty that something is wrong.

The detailed procedure is laid down in reference 1 and 2, and a number of other descriptions have been published. It is not intended to go further into the detail here. The sort of record obtained is shown in Fig. 5.

The bell-like normal curve appears in other connections. In reference 4, the results of measurements on radio programme material are discussed. It is found that the instantaneous somud level follows the Gaussian law, so that it would be possible to use the principles of our statistical control to monitor transmission levels.

More closely to the point in radio work, however, is the inspection and testing of receivers and amplifiers. The gain of an amplifier, or the sensitivity of a receiver, is the average effect of a

OPTIMUM VALVE LOAD

Unified. Treatment for Different Operating Conditions

IT is with some diffidence that one takes up this somewhat hackneyed subject, but the treatments of this problem given in textbooks and some recentlypublished articles are so involved, and in some cases misleading, that the writer would like to suggest that the various conclusions as to the value of the optimum load resistance can be derived, for different conditions governing the anode voltage, by a single method of solution.

The following treatment utilises the $\mathrm{I}_{a} / \mathrm{V}_{a}$ characteristics together with the load line drawn in the position giving maximum output for zero distortion; and, for simplicity, idealised characteristics are assumed. With the equivalent circuit method, it is impossible to -appreciate fully the assumptions involved.

Fig. I. Idealised valve characteristics for the condition where the HT voltage is fixed and the load resistance is connected directly in the anode circuit.

There are three distinct and clear-cut cases to be considered, namely:
(i) Where the HT voltage is fixed and the load resistance is in the anode circuit.
(2) Where the HT voltage is fixed and the load resistance is supplied through a transformer.
(3) Where the HT voltage is unlimited but where the output power is limited by anode dissipation. In this case, the load resistance may be either in the anode circuit or supplied through a transformer.

Case I. Suppose the load re-

By EDWARD HUGHES,
D.Sc., M.I.E.E.

sistance R to be in the anode circuit of a triode having a slope resistance R_{a} and the idealised I_{a} / V_{a} characteristics to be as in Fig. i. Let OA be the HT voltage available; then the maximum grid swing with zero distortion is obtained with a grid bias of- x of such a value that a grid voltage of $-2 x$ reduces the anode current to zero.

Let $A B C$ be the load line corresponding to resistance R; then output power due to the $A C$ components of anode voltage and current is given by

$$
\frac{\mathrm{CD} \times \mathrm{AD})}{8}=\frac{(\mathrm{CD})^{2} \mathrm{R}}{8}
$$

But
$\mathrm{OA}=\mathrm{OD}+\mathrm{AD}=\left(\mathrm{CD} \times \mathrm{R}_{a}\right)$ $+(\mathrm{CD} \times \mathrm{R})=\mathrm{CD}\left(\mathrm{R}_{a}+\mathrm{R}\right)$
Hence, AC output power

$$
\begin{aligned}
& =\left(\frac{\mathrm{OA}}{\left(\mathrm{R}_{a}+\mathrm{R}\right.}\right)^{2} \times \frac{\mathrm{R}}{8} \\
& =\frac{\mathrm{OA}^{2} \times \mathrm{R}}{8\left(\mathrm{R}_{\mathrm{a}}{ }^{2}+2 \mathrm{RR}_{a}+\mathrm{R}^{2}\right)}
\end{aligned}
$$

To find the value of R that gives the maximum AC power, the simplest procedure is to divide the numerator and denominator of the above expression by R, i.e., AC power

$$
=\frac{O \mathrm{~A}^{2}}{8\left(\mathrm{R}_{a}^{2} / \mathrm{R}+2 \mathrm{R}_{a}+\mathrm{I}\right)}
$$

This power is a maximum when the denominator is a minimum, namely when

$$
\begin{aligned}
\frac{d}{d \mathrm{R}}\left(\mathrm{R}_{a}^{2} / \mathrm{R}+2 \mathrm{R}_{a}+\mathrm{R}\right) & =0 \\
\text { i.e., }-\mathrm{R}_{a}^{2} / \mathrm{R}^{2}+\mathrm{o}+\mathrm{I} & =0 \\
\therefore \mathrm{R} & =\mathrm{R}_{a}
\end{aligned}
$$

Hence the AC output power is a maximum when $R=R_{a}$.

Case 2. Let OA in Fig. 2 represent the HT voltage available and assume the resistance of the primary of the transformer to be negligible. Draw a line XI such that its slope corresponds to the load resistance i referred to the primary windling, this equivalent resistance being $n^{2} \mathrm{~J}$, where
$n=$ primary turns/secondary turns.

By trial, draw a line EF parallel to XY such that the mid-point H of EF lies on the vertical line drawn at A. If $-y$ be the grid bias corresponding to the I_{a} / V_{a} characteristic through H, then y represents the peak value of the maximum alternating grid voltage for zero distortion.

From Fig. 2, AC power

$$
=\frac{G F \times G E}{8}
$$

But GE/GF $=n^{2} \mathrm{R}$ and
$\mathrm{OA}=\mathrm{OG}+\frac{1}{2} \mathrm{GE}=\left(\mathrm{GF} \times \mathrm{R}_{a}\right)$ $+\left(\frac{1}{2} \mathrm{GF} \times n^{2} \mathrm{R}\right)=\frac{1}{2} \mathrm{GF}\left(2 \mathrm{R}_{a}+n^{2} \mathrm{R}\right)$
$\therefore \mathrm{AC}$ power $=\frac{\mathrm{GF}^{2} \times n^{2} \mathrm{R}}{8}$

$$
\begin{gather*}
=\left(\frac{2 \mathrm{OA}}{2 \mathrm{R}_{a}+n^{2} \mathrm{R}}\right)^{2} \times \frac{n^{2} \mathrm{R}}{8} \\
=\frac{\mathrm{OA}^{2} \times n^{2} \mathrm{R}}{8 \mathrm{R}_{a}{ }^{2}+8 n^{2} \mathrm{RR}_{a}+2 n^{4} \mathrm{R}^{2}} \ldots
\end{gather*}
$$

If n be the variable quantity, the condition for maximum AC

Fig. 2. Fixed HT voltage and load applied through a transformer.
power can be found by first dividing the numerator and denominator of expression (i) by n^{2}, giving

AC power

$$
=\frac{\mathrm{OA}^{2} \times \mathrm{R}}{8 \mathrm{R}_{a}^{2} / n^{2}+8 \mathrm{RR}_{a}+2 n^{2} \mathrm{R}^{2}}
$$

This power is a maximum when the denominator is a minimum, namely when .

$$
\begin{aligned}
& \frac{d}{d n}\left(8 R_{a}^{2} / n^{2}+8 R R_{a}+2 n^{2} R^{2}\right)=0 \\
& \text { i.e., }-16 R_{a}^{2} / n^{3}+0+4 n R^{2}=0 \\
& \therefore 4 n^{4} R^{2}=16 R_{a}^{2} \\
& \text { andl } n^{2} R=2 R_{a} \\
& \text { Similarly, if } \mathrm{R} \text { be the variable }
\end{aligned}
$$

quantity, divide the numerator and denominator of expression (1) by R , giving

AC power

$$
=\frac{O A^{2} \times n^{2}}{8 \mathrm{R}_{a}^{2} / \mathrm{R}+8 n^{2} \mathrm{R}_{a}+2 n^{4} \mathrm{R}}
$$

This power is a maximum when $\frac{d}{d l}\left(8 R_{a}^{2} / \mathrm{R}+8 n^{2} \mathrm{R}_{a}+2 n^{4} \mathrm{R}\right)=0$ i.e., $-8 R_{a}^{2} / R^{2}+2 n^{4}=0$

$$
\therefore n^{2} \mathrm{R}=2 \mathrm{R}_{a}
$$

Hence, in each case, the AC power is a maximum when the equivalent resistance of the load referred to the primary circuit is twice the slope resistance of the triode.

Fig. 3. Unlimited HT voltage, but output power limited by anode dissipation. Load connected direct or through a transformer.

Case 3. Suppose the rectangular hyperbola in Fig. 3 to represent the permissible anode dissipation. Again, draw XY so that its slope represents the load resistance when the latter is in the anode circuit or the equiva. lent resistance when the load is fed through a transformer.

By trial, draw a line KM parallel to XY such that the point of intersection with the hyperbola at I . is midway between K and M . If the I_{a} / V_{a} characteristic passing through L corresponds to a grid bias of $-z$, then z represents the peak value of the maximum alternating grid voltage for zero distortion.

With no alternating voltage applied to the grid, the anode dissipation is given by OA \times AL. With an alternating voltage applied to the grid and no distortion, the average power from the $\mathrm{H} \cdot \mathrm{T}$ source remains unaltered, and the AC output is equal to the reduction of power dissipated at the anode. "A graphical expla-
nation of this was given by the writer in Wiveless World, October, 1942. Consequently, so long as the frequency is sufficiently high to prevent appreciable variation of the anode temperature, it is immaterial that any part of the load line is above the hyperbola in Fig. 3, i.e., the instantaneous power over a part of the cycle may be allowed to exceed the permissible anode dissipation.

From Fig. 3, AC output power $=\frac{\mathrm{MN} \times \mathrm{NK}}{8}=\frac{\mathrm{IAA} \times \mathrm{AK}}{2}$

But IIA $\times \mathrm{OA}=\mathrm{a}$ constant, (say, k) for a given triode.

Also,
$\mathrm{AK} / \mathrm{MN}=\mathrm{R} / 2$, and $(\mathrm{A} / \mathrm{MN}=$
$\mathrm{ON} / \mathrm{MN}+\mathrm{NA} / \mathrm{MN}=\mathrm{R}_{a}+\mathrm{R} / 2$

$$
\begin{aligned}
\frac{\mathrm{OA}}{\mathrm{AK}}=\frac{\mathrm{OA}}{\mathrm{MN}} \times \frac{\mathrm{MN}}{\mathrm{AK}} & =\frac{\mathrm{R}_{a}+\mathrm{R} / 2}{\mathrm{R} / 2} \\
& =2 R_{a} / R+1
\end{aligned}
$$

and AC output power

$$
\begin{aligned}
& =\frac{\mathrm{LA} \times \mathrm{OA}}{2} \times \frac{\mathrm{AK}}{\mathrm{OA}} \\
& =\frac{k}{\mathrm{I}+2 \mathrm{R} / \mathrm{R}_{a} / \mathrm{R}}
\end{aligned}
$$

Hence the AC power is a maximum when the denominator is a minimum, namely when R is infinity. Even with $R=4 R_{a}$, the maximum output is 100 per cent. greater than with $R=R_{a}$ and 33 per cent. greater than with $\mathrm{R}=2 \mathrm{R}_{a}$. Actually, the maximum power is limited partly by the curvature at the lower end of the $\mathrm{I}_{a} / \mathrm{V}_{a}$ characteristics and partly by the highest HT voltage practicable; with the result that in practice I may have to be limited to about 3 or 4 times R_{a}.

CATALOGUES RECEIVED

$\mathrm{B}^{\text {OOKLET, }}$ Mescribing the Mastatic" noise-free a erial system and a technical guide on television receiving aerials from Aerialite, Ltd., Castle Works, Stalybridge, Cheshire.

Illustrated leaflet showing typical applications of Oddie fasteners and quick-release pins for instrument panels, from Oddie, Bradbury and Cull, Ltd., I'ortswood Road, Southampton.

Letaflet describing the " Lens Lite" unit for illuminating and magnifying small instrument parts during manufacture or assembly, from the Electric Depot, Ltd., Pritchett Street, Aston, Birmingham, 6.
(TA A A H) HN
ELECTRICAL 8TORE8, 408, HIGH 8T., LEWI8HAM, LONDON, 8.E.13.
TERY CABE WITE ORDER Ho C.O.D. All Ption inolade Carriage or Pontage.
ELECTRIC LIEHT CHECK METER3, first-class condition, electrically guaranteed, for A.C. mains, 200,250 volts 50 cy . 1 phase 5 amp. load, each $18 / 8$. AUTO TRANSFORmER8. Step up or down, tapped 0-110-200-280-240; 1,000 watts. 8. POWER TRAN8FORMER, 4 kW , double wound, 400 volts and 220 volts to 110 volts, 50 cycle, single phase. Price 820.
AUTO TRAN8FORMER, step up or step down, 500 watts, tapped $0-110-200-280-240$ volts. 3108 \% WATT WIRE END RESIBTANCE8, new and unused, price per doz., $8 / /$, our assortment.
MOVING COIL AMPMETER by famous maker. 2in. dia., flush mounting, leading $0-10$ amps. F.S.D. $20 \mathrm{~m} / \mathrm{A}$, price $27 / \mathrm{C}$.

METAL REGTIFERE, large size, out put 50 volts 1 amp., 35/=.
SMALL MATN8 TRAM8FORMER8, input 230 volts, output 11 volts 1 amp., $11 /{ }^{\text {. }}$
METAL REGTIFIER8, large size, output 12 volts 1 amp., $17 / 6$.
FIXED' RE8I8TANCE8, size 12 in . by 1 in ., fireproof, resistance 2 ohms to carry 10 amps., $3 /=$ each ; set of 16 mounted in steel frame, only $35 /=$. TRANSFORMER CORE for rewinding only, complete with clamps, size approx. 21 k.w., price 25/-. 8MALL M.L. ROTARY CONVERTER, in cast alli. case, size $14 \times 4 \frac{1}{1} \times 4 \frac{1}{1}$ in., permanent magnet fields, converters need attention, not guaranteed. 30/-. DYNAMO, slow speed, only 500 r.p.m., output 25v. -10 amps., shunt wound, adjustable brush gear, ball bearing, condition as new, weight 60 lbs., a real high-grade job. Price 87108.
50 VOLT MOTOR, D.C., input 4 amps., h.p., ball bearing, double ended shaft in. dia., slow speed, only 500 r.p.m., shunt wound, condition 25 new, also make good slow speed generator. Price 50/new, also make good s.ow speed generator. Price $50 /-$
AUTO TRANBFOR ${ }^{2} 40 \mathrm{v}_{\mathrm{o}}$ 1) KW . 57 104; 2 KW ., 10.
50 VOLT D.C. MOTOR, shunt wound, ball bearing, 1 h.p., speed 000 r.p.m., in new condition, make good generator. Price 1 .

Examples of provlome arsournd in flath:
What rill bo the voltege when ourroat I Rowil through redidance \mathbb{E} P.
What fill bo the roltage with whtt valee \bar{W} end I eterment flowing?
What is the oprreat flowing what watte veke is \bar{W} end What exreagt will flow through \mathbf{R} reistane where voltage What gar
What will be the mintance whar oerreat I flow et voltage of
Whit will be the reletance where watte $\overline{7}$ is at voltage $\frac{1}{5} ?$ What will be the rovidane whore watt wis at currelt If What is the wattase at voltese Ethrough reaitacee R i What is the weltase of current I through ramistance $\$$? What will be the wattere of I eurnent at E Foltage ? The coalen read from 1 millivolt to 1,000 volte. From 1 ohm to $1,000,000$ thme. From 1 milliamp to 10 amperve. From one-tenth of milliwatt to 10,000 watte

The calculator is eold comploto and whib Statloners. If unable to obtaln, Write Dent. Granbourne Terrioe, MALT HILL, SLOUGR, BUCE for name and sodirees of Tour mearent thontete

WORLD OF WIRELESS

U.S. FREQUENCY PROPOSALS

 FOLLOWING the recent proposals put forward by the U.S. Federal Communications Commission for the allocation of frequencies above $25 \mathrm{Mc} / \mathrm{s}$, recommendations have now been made for the lower frequencies.In view of the rumours current some months ago it is interesting to find that some 120 channels have been allocated for international broadcasting. In its finding the F.C.C. states: "Other means of international communication, including the transmission of it.S. broadcasts via point - to - point facilities to foreign countries for rebroadcast there over domestic stations, have a rôle to play; but no such technique can take the place of direct broadcasting from the United States to listeners abroad."

The only changes in the proposed allocations for international broadcasting in this section of the spectrum are: the $15 \mathrm{Mc} / \mathrm{s}$ band has been narrowed by $50 \mathrm{kc} / \mathrm{s}, 100 \mathrm{kc} / \mathrm{s}$ have been added to the $17 \mathrm{Mc} / \mathrm{s}$ band, and $100 \mathrm{kc} / \mathrm{s}$ deleted from the $21 \mathrm{Mc} / \mathrm{s}$ band, making each 200 kc / s wide. It will be remembered that the present allocation of $25.6-$ 26.6 Mc/s was omitted from the proposals relating to the higher frequencies as it is useful only
during maximum sunspot activity. Amateur frequencies leelow 25 Mc / s remain unaltered in the 3.5 . 7^{\prime} and $14 \mathrm{Mc} / \mathrm{s}$ bands, but it is proposed to delete the $300 \mathrm{kc} / \mathrm{s}$ band of from $1.75-2.05 \mathrm{Mc} / \mathrm{s}$. In lieu of this the Commission is making provision for an amateur "' disaster "' network in the $1605-1800 \mathrm{kc} / \mathrm{s}$ band. In addition, the $21-2 \mathrm{I} .5 \mathrm{Mc} / \mathrm{s}$ band is allocated to amateurs.

The extension of the present broadcast band of $550-1600 \mathrm{kc} / \mathrm{s}$ to $535-1605 \mathrm{kc} / \mathrm{s}$ is recommended.

There is still considerable controversy on the relative positions of FM and television in the higher frequencies. So much so that in the final allocations between 25-30,000 Mc / s, the $44^{-108 ~ M c / s ~ b a n d ~ i s ~ n o t ~}$ being assigned until the results of $1 \cdot \mathrm{M}$ tests being undertaken during the summer, when sporadic E transmissions are at their maximum, are known. F.C.C. states that space will ultimately be allocated as follows: $36 \mathrm{Mc} / \mathrm{s}$ to television, 18 Mc / s to $\mathrm{FM}, 4 \mathrm{Mc} / \mathrm{s}$ to amateurs, $4 \mathrm{Mc} / \mathrm{s}$ to non-government fixed and mobile services, and $2 \mathrm{Mc} / \mathrm{s}$ to facsimile. The FM alternatives are $50-$ 68. 68-86, or 84 -102 Mc / s.

The proposals will be passed to the Federal government preparatory to the holding of an international conference on frequency allocations.

INDIAN SIGNALS. The general-purpose low-power No. 22 transceiver, which has facilities for both 'phone (5 W) and CW (15 W), in use in the Burma campaign. Men of the Fifth Indian Division are operating the set which has a frequency coverage of from $2-8 \mathrm{Mc} / \mathrm{s}$.

B.B.C. CHANGEOVER

T'HE first of the B.B.C.'s postwar plans for home listeners is due to come into operation on July 29th, when two programmes, which will be known as the Home Service and the Light Programme, are introduced. They will be followed later by a third programme.

The Home Service will be radiated from 6.30 a.m. until midnight on medium wavelengths by Regiona! transmitters, which will in most cases operate on the wavelengths used before the war.

The provisional list of the Home Service wavelengths are:-
 North Region 449.1 ($688 \mathrm{kc} / \mathrm{s}$) West Region $\begin{aligned} & 514.6 \quad(583 \mathrm{kc} / \mathrm{s}) \\ & 28.0\end{aligned}$ Scotland \quad …............. $\begin{aligned} & 203.5 \\ & 391.1\end{aligned} \begin{gathered}(1,474 \mathrm{ke} / \mathrm{s}) \\ (767 \mathrm{kc} / \mathrm{s})\end{gathered}$ Wales …............... 373.1 ($804 \mathrm{kc} / \mathrm{s}$) Northern Ireland 285.7 ($1,050 \mathrm{kc} / \mathrm{s}$)

The Light Programme will be radiated from 9 a.m. until midnight on 1500 metres ($200 \mathrm{kc} / \mathrm{s}$), and on 26I.I metres (II $45 \mathrm{kc} / \mathrm{s}$) for urban areas where the long-wave transmission is not well received.

U.S.S.R. MORSE BULLETINS

IN response to enquiries from 1 readers we have secured details of the transmission of news in morse from Moscow.

Transmissions are continuous from 0830 to 0430 GMT, but it is impossible to give the exact times for the English transmissions owing to the procedure employed. It is as follows: - Several news items are first transmitted in English and then in French on the Hellschreiber radio-printer; these items are then repeated in the same sequence in English and French morse. After a short interval new items are transmitted in the same order.

The following schedule gives the wavelengths employed throughout the period of transmission:-

0830-1100	$25.95,30.03$	
$1100-1600$	$20.07,25.95$	
$1600-1900$	$36.92,39.89$	
$1900-2100$	54.95	
$2100-0100$	$39.89,54.85$	
$0100-0480$	$54.95,65.08$	

SETS IN THE U.S.

AS a result of a survey of American broadcast receiver manufacturers it is predicted that the industry will require only 83 days after Government restrictions are removed before it starts civilian production. Some five million receivers are expected to come off the production lines in the first six months and a further eight million in the second.

In addition to the broadcast sets some 96,000 television sets are promised.

The majority of the broadcast receivers (65 per cent.) are expected to have seven valves or less.

EDUCATIONAL OPPORTUNITY

W
E are informed by the Head of the Department of Electrical lingineering and Physics at the Borough Polytechnic that another intensive full-time course in radio enginerring under the liankey Scheme will commence on October ind.

The conditions for entry, which include free tuition and a maintenance grant, are obtainable from the Borough Polytechnic, Borough Road, London, S.E.I.

ABSIE

THIE activities of ABSIE (American l3roadcasting Station in Europe) ceased on July 4th. With its cessation the two transmitters placed at the disposal of the American Office of War Information by the B.B.C. have been returned.

In addition to being radiated by these two transmitters on 307.1 and 267.4 metres the programmes originating from the London studio of ABSIE have been broadcast on short-waves by American and British stations.

WHAT THEY SAY

A Faultless Monster.-Many who attach importance to the fair representation of public opinion regard the B.B.C. as a Frankenstein's monster which is getting out of control. The influence over public opinion of the B.B.C. is already as great as that of all the newspapers put together.-Somerset de Chair. M.P., writing in "The Times."

Liberation Pleasures.-I must write to tell you that receiving Wireless World was one of the greatest pleasures for me since being liberated. I have already read it completely, but shall go through it several times again.-A Channel Islands reader.
Sovereignty.-One might almost define sovereignty to-day as the possession of a radio station of one's own. - Waller Elliot in the House of Commons.

PERSONALITIES

Sir Robert Watson-Watt was present at the opening session of the British Commonwealth Air Transport Council, as advisor on radio and radar.
E. .Lloyd Thomas, a contributor to Wireless World, has left The Plessey Co., and is now in charge of the electronics section of the Sperry Gyroscope Company.

IN BRIEF

Palestine Broadcasting.- The administration of the Palestine Broalcasting Servier has been separated from the General 1'ost Office and a new department of broadcasting has been formed in Jerusalem. The new department has appointed an assistant controller of the English progratumes and separate controllers of the Arabic and Hebrew transmissions.
American Radio Conference.-U.S. Covernment officials, in conjunction with representatives of the American radio industry, are meeting under the chairmanship of Dr. Dellinger preparing for the Third Inter-American Radio Conference, which opens at kio de Janeiro on September 3rd.
Running Repairs.-The maintenance of the broadcast receivers issued to the Forces presents something of a problem when, as often happens, nobody in the unit knows sufficient about radio to tackle the job) of repairing or overhauling a defective set. Middle Fast Command has now arranged for five radio repair trucks, jointly organised by the Forces Broadcasting Service and R.E.M.E., to tour the Command.

Re-issued.-W'e have received a copv of the re-issued Bulletin of the British Sound leecording Association. This four-page news sheet gives information on recent developments, equipment and people in the sound recording sphere. Information about the Association's activities is obtainable from the General Secretary, 1). W. Aldous, "Strathdee," Studley Ruad, Torquay, Devon.

Radio v. Cancer.-According to The Petroleum Times, radio-frequency energy is being used by Soviet scientists in preparing mineral oil in a finely emulsified state for the treatment of cancer. The emulsion, of which the oil particles must be small rnough to pass through very fine capillary vessels, has leen successfully used for intravenous injections.
B.L.A.1.-Operated by men of the British Liberation Army, the former German transmitter at Cologne is now broadcasting on 4.55 metres and is announced as B.L.A.r.

Export Interest.-Industry generally is taking a lively interest in the recently formed British Export Trade Research Organisation (BETKO). The following radio firms are among the ordinary mernbers: The British ThomsonHouston Co., Ltd.; Ultra Electric, Ltd.; PortOgram Radio Electrical Industries, Ltd.
New Address.-The address of the Technical and Commercial Radio College, formerly of Ealing, is now North Road, Parkstone, Dgrset.
Peacetime Radio.-A Government factory at South Shields has been allocated to Wright and Weaire for civilian radio production.
Cable Merger.-l3ritish Insulater! Cables, Ltd., and Callender's Cable and Construction Co., Ltrl., have amalgamated and will in future be known as British Insulated Callender's

RECORDING LABORATORY

Installation in the Library of Congress, U.S.A.

IT' does not appear to be generally known that one of the most modern and elaborate sound recording laboratories in the U.S.A. is installed in the Library of Congress, Music Division, at Washington, D.C., under the direction of the Librarian, Archibald MacLeish.

The need for such a laboratory first expressed itself through the popular demand for duplicates of the recordings in the Library's Archive of American Folk Song. For many years the Library of Congress has sponsored a scheme for recording American folk music in the field from the mouths of contemporary singers. A collection of 10,000 songs on discs, cylinders, etc.; has been accumulated under the direction of John A. Lomax, Honorary Curator, to form one of the largest collections of its kind in the world. However, only students who were free to come to the library or enthusiasts who could afford to have expensive copies made were able to use the library's vast collection.

The Carnegie Corporation, in 1940, made a grant of over 4 I,Ooo dollars for the installation of a complete laboratory for duplicating gramoplone, recordings of all types, for making master recordings that can be pressed and distributed, for originating broadcasts and for making transcriptions ($16-\mathrm{in}$. $33 \frac{1}{\mathrm{~s}}$ r.p.m. discs) for radio transmissions. In addition, a mobile sound unit and a number of portable recorders were purchased for use in the gathering of " on-the-spot"" material and other field recording work.

Through the facilities of the laboratory it is now possible for schools, libraries and individuals to obtain recordings for home study of rare American folk music, poetry, etc., and contemporary U.S. history and culture can be recorded for future generations.

Equipment

The technical equipment of the laboratory includes RCA 88A

By DONALD W. ALDOUS

and $\mathrm{Mi}-\mathrm{HO}_{4+}$ microphones, used in the main studio, and in the recording room a large fourpanelled rack houses: (I) Hallicrafters SX-28 receiver and Hallicrafters S-3I FM-AM high-fidelity RF tuner (specially chosen for recording radio transmissions with optimum quality and low background noise); (2) 3-channel IRCA 85 B pre-amplifier, dualchannel line equaliser, patch panel, 40-D amplifier and 94-D monitor : (3) 3-channel pre-amplifier meter panel, patch panel, duplicate RCA $40-\mathrm{D}$ amplifier and $94-\mathrm{D}$ monitor: (4) Presto 55-watt recording amplifier and cutting-head bridging-monitor amplifier. The patching panels permit various possible interconnections of apparatus to be made and allow monitoring at almost any point of the circuits.

Two Scully recording lathes, fitted with RC.A MI-4887 heads,
witl a pair of Presto $6 \mathbb{N}$ recording units, comprise the actual cutting apparatus. These precision Scully machines have an automatic runout spiralling device and many other useful features, including a special relay-operated change-over circuit to switch the modulation from one cutting-head to the other instantaneously by push-button control.

"Dubbing" Apparatus

As the production of duplicate recordings, up to as many as 200 in one week, from the collection on the shelves of the library is an important part of the work of the laboratory, considerable attention has been paid to the re-recording or "dubbing" apparatus. The main dubbing-table has several pick-ups, including Brush PL,-20 and RCA models, each adapted to give the best results with certain types of records. Various cut-off, taper filters and equalisers, mostly used in transcription work, are located on this dubbing-table, to

Interior view of the recording laboratory's sound truck, showing one of the $16-\mathrm{in}$. recorders, control panels, telephone intercommunication link, recording amplifier, etc.
which also is con nected a variable frequency generator that enables old records, originally recorded at speeds other than the normal, to be copied, as the speed of the turntable can be adjusted until the best quality of reproduction is obtained.

Restoring Old Records

An interesting aspect of the work undertaken in this laboratory has been the repair and restoration of old cylinder and disc recordings, of which some specimens are of unique historical value. Many of the cylinders reach the laboratory in dirty and cracked condition covered with mould, and have to be cleaned before being transcribed on to " cellulose " direct playback discs, but the minimum of treatment is applied as the grooves are sometimes damaged by this operation. Another difficult problem is cracked cylinders and discs, but the laboratory technicians are experimenting with a machine to eliminate the worst effects of such cracks and scratches.
The cylinders are copied on a simple rebuilt " Dictaphone " machine with which can be used several specially designed vertical pick-ups, i.e., a photo-electric model made by the Philco company, a lightweight electro-magnetic model, or a special crystal unit. Four feeds, namely, 100, 150, 160 and 200 tracks per inch, have enabled the macline to handle all the cylinders so far encountered, but the transcription turntable has been made continuously variable to cope with rotational speeds varying between 50 and 225 r.p.m.

The sound level on most of the acoustically-recorded cylinders is very low, and the useful frequency range recorded was usually between about 250 and $3.500 \mathrm{c} / \mathrm{s}$, with most of the rumble occurring below $250 \mathrm{c} / \mathrm{s}$ and most of the surface noise above $3.500 \mathrm{c} / \mathrm{s}$; hence careful application of equalisers is needed to allow a disc transcription of tolerable quality to be made.

The portable or field recording equipment of the laboratory consists of nine complete portable recorders and a fully-equipped mobile sound truck. All the portable units, comprising small
$12-\mathrm{in}$. and 16 -in. slow-speed models, have self-contained power supplies, operated from storage batteries; as well as several with petrol chargers for recharging batteries when commercial power is not available. The sound truck is equipped with two $16-\mathrm{in}$. Presto turntables, of which one can be seen in the illustration. Telephonic communication is provided between the recording location and the engineers in the truck, and a portable four-channel mixer is available. The apparatus is energised from a self-contained inovolt $60-\mathrm{c} / \mathrm{s}$. supply, which operates from a 32 -volt storage battery system. The batteries can be recharged by a generator driven by the truck engine, or from commercial mains. The frequency of the power supply is regulated by a field control connected to the convertor, and the former, with a frequency-indicating meter, is visible on the control panel next to the turntable in the illustration on the preceding page.

Preserving Recordings

Completed reference transcriptions, recorded on conventional nitro-cellulose direct discs, are stored on racks in closed metal boxes in air-conditioned vaults, as such discs are not stable. Solidstock pressings are durable, but this process is too slow and costly for most of the records stored in the library's collection, and so research has been commenced to determine the life expectancy and shelf-life, and the best method of preservation, of direct recordings.

In closing this brief survey of the work and equipment of the Library of Congress recording laboratory it should be mentioned that, since 1941, when the United States of America entered the war, the laboratory has been actively engaged in war work, and has devoted a major portion of its time to the Armed Services in the production of master recordings for processing purposes and the rendering of a technical reference service.
The author wishes to express his thanks to- Dr. Arthur D. Semmig, Chief Engineer of the laboratory, for information and for permission to reproduce the accompanying illustration.

PREMIER RADIO

cman
 suamen woike 107, Lownic curtor 20AD, Loridoi, y.5. (Ambert 4723.) OALLERS TO: गUELIE WORTB \propto
 1945 LEx mow available. HUMDEED

 pre-mar qual'ty. with inad, $88 / 6$.
HerEIti. Fint grede army trpe Univernal Teet Motert in shockproof bekelite caver, ravget and $\mathrm{D} / \mathrm{O}, 1,10,100,500 \mathrm{~m} / \mathrm{s} \mathrm{D} / \mathrm{O}, 0.10,000 \mathrm{hmon}$ 38 16.

 ather type $10 / \%$. Maltiple shunta 10.100 ,

 high and low gto topote wh mixer, troble aad ondientro, 1 ,

 bareatey cosdback. ©8 8s.
 at 1 a., 801 -: for 2.6 or 12 F, batt. at 1 a. $89 / 0$ lor 8 \%. batt at ia., 83 10u. ; 12 v. ismpa; ata
 $100 \mathrm{~m} / \mathrm{s}, 572 \mathrm{~m}, 6.3 \mathrm{~T} .2-3 \mathrm{~B} ., 29 / \mathrm{m}: 350+850$ $100 \mathrm{~m} / \mathrm{s}$, three 47.28 s windinga, $29 / \mathrm{F}: 850+250$
 $89 /=950+850180 \mathrm{~m} / \mathrm{s}, 5 \mathrm{~F}_{2}^{2} \mathrm{~s}, 6.8 \mathrm{v} .2 \mathrm{a}$

 2 -rolt valve, 4 oolfe, $12-170 \mathrm{~m}$. basdepread tunfas. 55/= taciuding tas.
 $818 ; 20 \times 8 \ln$. $10 / 8$: $18 \times 8 \times 31 \operatorname{lin} 7 / 9$.

 $8 / 8,100 \mathrm{~mm} / \mathrm{d} ., 8 / 11,160 \mathrm{mmid} ., 1 / \mathrm{k}, 260 \mathrm{mmid}$. 5/8: ehat complers, 714: texible ditto, 1/0

 $91-281,260-760,700-2,000$, $800-667$, a railabio a H.P. trank, ertal, or oec. colla, 2/8 esch. Yexley
 Jocators, 8/= cech: mefers, $1 /=$ gach. 8 mall 2 - rens conved 466 K.Q. I.F. trani. 18/e patr: midet type, $21 /=$ palr. 60 mmid. trimamers, $1 /=: 000$. padder, 750 manid., $1 / 9:$ B.F.O. 0 ill, $\% / 8$. CONDENBRES. All umill tobular type. 25 mp .
 350 vw. $8 / 0.4 \mathrm{mf} .400$ F.w., $3 / \mathrm{C} .8 \mathrm{mf} .450$ ซ.ซ. 4/9. $16 \mathrm{mp} .450 \mathrm{Fw}, 7 / 8.20 \mathrm{mf} 450 \mathrm{mw}, 8 / \mathrm{B}$. $8+8450$ vw. $8 / 8.16+8160$ 下. $9 / 8 / 8$. is mi. $150 \mathrm{Fw} \cdot 4 / 8.80 \mathrm{~min} 50+0 / 8 / 8$.

 TRASPOBMERS, $1 /=1$ midso type 18/2. COVING OOIL SPEAEEEE, Rols 6fta, ot 8-m. trana, 8\%/6 Goodman fith. P.M. With 3 or 15 ohm valce cotl, no traon. 80/w. 8it. 1.800 ohm P.E. trang for any sbove, 10/8. Bupher quathy any tube sta is or $28 / 6 ; 18$-wate, $80 / 5 ; 80$-wath, $49 / 8 ; 60$-wath 69/0.
 400 ahms $80 \mathrm{~m} / \mathrm{h}, 18 / \mathrm{m}$; $80 \mathrm{~B}, 100 \mathrm{~m} / \mathrm{g}, 400$ ohmm, $180 \mathrm{~m} / \mathrm{s}, 180$ ohme, $89 / \mathrm{s}$.
 oored wolder, 64, per ooll of $4 / 6$ per lb, : marbened 2-pla. plaga and mocket, 84 ittio, 8 -pin, 8/m Octal cookrta, 1014. itte. amphemol trpe. 1/s.

Letters to the Editor

Textbook Authors • Students' Troubles • Antiquity of UHF • Tone Control

Radio Textbooks

IREAD Thomas Roddam's article in your June issue with interest, as I am the author of an elementary textbook which was reviewed in October, 1944, in Wireless World, Wireless Engineer (by G. W. O. H.), and in the Proceedings of the Physical Society.

Mr. Roddam's suggestions for obtaining authors of good textbooks on radio, presumably those of an advanced nature, are based on the following theme: "There is no time in which the full-time lecturer in radio can keep up to datewe cannot see books we want coming from this source. . . In industry there are potentially better-equipped authors."'

Now in my view a good textbook should exhibit these qualities: (i) An ordered assembly of accurate subject-matter to the standard concerned, (ii) clarity of exposition, (iii) a knowledge of the special difficulties of the students for which the book is written.

The possession of a fund of accurate and detailed knowledge of a subject does not automatically carry with it the ability to impart information in a clear and orderly manner by the written (or the spoken) word, and although quality (i) above appears to be well within the powers of men in industry, qualities (ii) and (iii) can only be achieved after experience of active teaching of the subject. Consequently if research workers and others in industry wish to write a good textbook on radio (with the emphasis on the word "good"), they should spend some time in teaching.

On the other hand, as Mr. Roddam has no doubt in mind, there are teachers in the universities, the polytechnics and technical colleges, and the schools who do not take the trouble to keep up with modern developments in their subject. Macaulay wrote:. "I hold every man a debtor to his profession," and many teachers,
the true élite of the profession, do find time to read regularly journals such as the Proc. I.E.E., Proc. I.R.E., Wireless Engineer, Wireless World, Nature, to quote only a few examples. My suggestions for authors of good advanced textbooks on radio are: Professor G. W. O. Howe of Glasgow University, and J. A. Ratcliffe, C. W. Oatley of Cambridge University. M. NELKON.

Northampton Polytechnic, London, E.C.

WITH reference to Thomas Roddam's article, may 1 suggest that the trouble is in part due to our authors being undecided upon the type of reader to cater for?

This indecision is quite understandable, as the readers of radio textbooks vary between the trained electrical engineer who wishes to specialise in radio and the draper's assistant who is fed up and wishes to " take up something more interesting."

The author, vaguely conscious of this diversity in type of reader, makes an attempt at satisfying all concerned, and inevitably falls between two stools by producing a book which bores to tears the trained engineer, and completely baffles the lay reader who obviously needs a preliminary electrical training before attempting such a highly specialised subject.

So let us take an adequate background knowledge for granted when we write our radio textbooks, and not try to compensate for the lack of such training by using up half or three-quarters of each book with matters which should have been covered by the reader long before he aspired to the study of radio communication.
C. M. LLOYD. London, N.W.3.

"Valve Vectors"

MAY a student chip in to the Many of us have dabbled in wireless for years; we haven't got
cathode-ray tubes or valve voltmeters or standard sine-wave sources, so we are not able to check experimentally the dictum of the expert. We have accepted such textbook statements as the " anode current is in phase with the grid input voltage, when the a node load is resistive." We welcomed the appearance of Dr. Sturley's article and spent many hours reading and re-reading it, but we are afraid we must agree with Dr. Parnum at least to this extent, that we were never quite clear what Dr. Sturley meant by " the current I_{a} produced by the generated voltage $\mu \mathrm{E}_{g}$." Not that Dr. Parnum has cleared matters up ; indeed, his criticism and Dr. Sturley's reply have made confusion worse confounded!

Now, Sir, what is the poor student to do? We welcome articles by experts who take pains and trouble to make things clear to avid amateurs, but we like to feel our authority is inviolable. Personally, we confess we are often confronted with an inability to follow an experts' exposition and admit to the human weakness of preferring to remain in happy ignorance rather than lose face by admitting our mental weakness.

But Dr. Sturley will not let us remain in happy ignorance. He has made us so unhappy over this question of anode and grid phase relationship that we hope he will take pity on us and explain a little more fully the problem that disturbs our sleep. The problem is this: does the connection of a reactance in parallel with the resistive anode load affect the phase of the anode voltage, E_{0} ? So far as our memory serves, we have never seen in any textbook a reference to the effect, if any, of reactance on the a node voltage phase-all references confining themselves to the special case of a resistive load. One infers, of course, that a reactive load will change the phase, but when we, ourselves, put the question to several of our expert friends their
explanations were, to say the least, unsatisfactory.

We applied ourselves vigorously to Dr. Sturley's article feeling that herein lay the solution, but we were not able to expose it-somewhere it lies hidden in $\mathrm{E}_{q}, \mathrm{I}_{a}, \mathrm{I}_{c}$, $\mathrm{I}^{\prime}{ }^{\prime}, \mathrm{I}_{\mathrm{L}}$ and $\mu \mathrm{E}_{\sigma}$. His statement that " the grid input AC voltage and the voltage generated by the generator imagined to exist inside the valve are 180 deg . out of phase; this is true whether the anode load is resistive or reactive," seems incompatible with his conclusion that "Eo lags behind $\mu \mathrm{E}_{g}{ }^{\prime \prime}$ in his analysis of the tuned anode oscillator. Our bewilderment is due to our inability to decide which is the source of the AC output, the HT battery or the generator inside the valve? If the valve is an impedance varying inversely with the grid voltage and the anode load is in series with it, then the phase of the voltage at the junction of these two impedances will be determined by their reactances. Oi the other hand, if the valve is a generator with the anode load strapped across it the reactance of the load will not shift the voltage phase of the generator, but will only affect the phase of the current flowing through it relative to the voltage.

Please, Dr. Sturley, we are grateful for your article; that we do not fully understand it is our lack. Will you help us out?
'STUDENT."

Were Old-timers " Dumb"?

 A LTHOUGH I have little fault to find with your contributor "Diallist," I think it is a little unkind to suggest that we oldtimers of twenty-five (and more) years ago were "dumb" or conservative enough to scoff at the idea of working on frequencies as high as $25 \mathrm{Mc} / \mathrm{s}$.In 1917 experiments were being carried out with spark transmitters by the Marconi Company on frequencies lying between 60 and $70 \mathrm{Mc} / \mathrm{s}$., and surely "Diallist" has not forgotten the Inchkeith otating beam, installed in 1920, operating at $50 \mathrm{Mc} / \mathrm{s}$.
It is doubtful whether the " astonishing developments in wireless technique" seen during the last 25 years would have materialised had not most of those
associated with its development been singularly free from the hidebound limited outlook that one normally associates with followers or practitioners of other professions.
After nearly 30 years' work on frequencies from below $20 \mathrm{kc} / \mathrm{s}$, to something over $6,000 \mathrm{Mc} / \mathrm{s}$., I cannot recall one colleague who ever expressed a doubt regarding the value to the world of development work on frequencies extending in both directions.
I am hoping to live long enough to see the modern physicists turn their attention to the frequencies below $15 \mathrm{kc} / \mathrm{s}$.-possibly for the purpose of erecting a real central heating plant. Then I shall dietechnically happy.

CHAS. H. WHITE.

Staines, Middx.

"New Versatile Tone Control Circuit "

WITH reference to the letter by D . Winget published in the June Wireless World, I should like to make two comments.

His suggestion regarding the alteration of the position of the resistance R3 (reference his figure) is good, although it cannot be applied to my tone control circuit.
Concerning Mr. Winget's second remarks I entirely disagree. If one takes the meaning of " normal " as being the amplifier without bass boost, then obviously, if one increases the bass, one must also increase the output at the bass compared with normal. Why Mr. Winget refers to correcting the loudspeaker deficiencies as "cooking" and yet does not use this term when it is applied to the correction of deficiencies in other components I cannot see. Surely it is no more cooking to correct for the loss of the low frequencies in the loudspeaker than for the loss of the low frequencies in the pick-up. Usually the loudspeaker is the weakest link in the chain, so why not correct for it? There is another point ; assuming the loudspeaker to be perfect, there is greater power associated with the low frequencies than with the higher frequencies, and therefore, if you now put in the low frequencies which were not there in the "normal " amplifier, the output must go up.

> G. N. PATCHETT.

The new Vortexion 50 watt amplifier is the result of over seven years' development with valves of the 6L6 type. Every part of the circuit has been carefully developed, with the result that 50 watts is obtained after the output transformer at approximately 4\% total distortion. Some idea of the efficiency of the output valves can be obtained from the fact that they draw only 60 ma . per pair no load, and 160 ma . full load anode current. Separate rectifiers are employed for anode and screen and a Westinghouse for bias.
The response curve is straight from 200 to 15,000 cycles in the standard model. The low frequency response has been purposely reduced to save damage to the speakers with which it may be used, due to excessive movement of the speech coil.
A tone control is fitted, and the large eight section output transformer is available to match, $15-60-125-250$ ohms. These output lines can be matched using all sections of windings, and will deliver the full response to the loud spaakers with extremely low overall harmonic distortion.
PRIOE (with 807, otc., type valves) $\$ 18.10 .0$ Plus 25\% War Increase
MANY THOUSANDS ALREADY IN USE

VORTEXION LTD. 257. THE BROADWAY. WIMBLEDON. S. W. 19 . Phone: LIBerty 2814

RANDOM RADIATIONS
 By "DIALLIST"

Jointing Litzendraht

ABLACKPOOL reader asks if I know any way of making satisfactory soldered joints in "Litz" wire. The ideal method would, I suppose, be to solder and re-insulate each strand separately, but I can hardly imagine any normal human being going to those lengths with, saty, $27 / 44$! What I have always done is simply to bare all the strands of both ends, to twist them together, to run in resin-cored solder, and to insulate with a silk binding. It does not take long to do and it seems to work well enough. When making a tapping in a Litz-wound coil, I bare about three-quarters of an inch at the appropriate place in the main wire and about the same amount at the end of the piece that is to form the tap. A standard flex T-joint is then made, soldered and wrapped. The chief snag lies in stripping the insulation from such fine stuff as No. 44 SWG. Scraping is a tedious job and if you attempt to do it you are almost certain to cut or break some of the strands. I have seen it recommended that the insulation should be burnt off with the flame of a match. I wonder if the maker of that suggestion has ever tried it out! Hardly, I think, for if he had he'd have found that the flame burns out not only the insulation, but the wire as well. My own way is to char the wrapping by waving a match flame to and fro under it, taking care not to let the silk catch fire. When the insulation has been charred it is easily rubbed off with the fingers. Readers are very likely to know of better methods of dealing with Litz. If they do I should be very glad to have particulars and to publish them for the common good if they will be so kind as to send them along.

Small Tools
\bigcirc^{N} my return to civil life I was horrified to find how difficult small tools, such as one needs for wireless work, were to obtain and to what prices some of them had risen. My drill canister, when I came to check over its contents, was found to be in need of replenishment. Well, mine proved to have fifteen drills missing or unserviceable (friends and evacuees had done some borrowing in my absence, I suspect) and it wasn't too easy to obtain them. They would have cost about fourpence or fivepence apiece in pre-
war days, but I had to pay an average of just over a shilling a time for them. And such pliers! Can anyone tell me where to buy a good pair of little four-inch bottle-nosed pliers? Mine have mysteriously disappeared, so have flat-nosed pliers of the same size and a much-valued pair of small toggle-action end-cutters.

Good News-If True

KNOWING (a) how many and how strange are the vested interests concerned and (b) our national love of compromise, I've always taken rathęr a gloomy view of the possibility of our getting rid, in any reasonable time, of interference with wireless reception due to man-made causes. I have just heard that a committee is considering the question at the moment and that it is likely to recommend in its report that strong and immediate action should be taken. I hope that this is so and that, when made, its recommendations will be accepted and acted upon at once. What too often occurs is that when a committee of highly qualified and experienced men is constituted to consider this question or that its labours eventually go for little or nothing. Government officials, who must know far less about the subject than they, water down the recommendations until they become more or less ineffective. That's what I'm so afraid of in the case of interference. We are on the verge of producing masses of new motor cars and vast quantities of domestic electrical appliances. Will any Government take the strong line of bringing in immediately legislation making it an offence to sell or use any kind of apparatus which can cause interference with wireless reception? I wish I could think so.

Queer Ideas

A CORRESPONDENT, who endorses my remarks in a recent issue on the folly of leading the man-in-the-street to believe that post-war receiving sets are going to be cheaper, points out also that the lay Press has been guilty-in part at any rate-of starting and fostering some strange ideas. One of these is that radiolocation has led to vast advances in television technique. Quite a lot of people seem to believe that one. Actually it hasn't, for almost the only similarities between the television and radiolocation re ceivers are that both use cathode-
ray tubes and work on the ultrashort waves. We have probably learnt a good deal about the design and mass production of CRTs, though so far there haven't been many signs that mass production is going to result in any sensational lowering of prices. There have been advances, too, in ultra-short-wave technique in radiolocation and in other branches as well: much work, for instance, has been done on aerial systems and the development of Polythene has solved certain problems. But I don't fancy that any of these things is going to revolutionise television. One weird piece of confused thinking that one comes across is that television and radiolocation are much the same thing. I've heard railway-carriage experts explaining (1) that post-war television will enable those who use it to see distant objects in the dark or even through brick walls. And I wish the lay press would keep radiolocation and ionosphere "sounding ' ${ }^{\text {separate. }}$

Make It Plain

TT would be no bad idea if radio manufacturers who turn out broadcast sets with magic eyes explained rather more clearly in their books of words how necessary it is to tune correctly if a set is to do itself jus. tice. And would it not be better if the directions told the layman to tune for the smallest spaces between the limbs of the cross rather than for the biggest cross? That is a point that designers of magic-eye tubes might also bear in mind. If the set has no tuning indicator, the handbook should certainly give very plain instructions for finding the optimum setting by ear. With either an indicator-less superhet or a straight receiver I don't think you can beat the bracketing method. Having found the approximate setting, turn clockwise until obvious distortion occurs; then turn anticlockwise until the same thing happens. Make a smaller bracket if need be. The right setting will then be easy to find.

Loudsquawker

COMETHING has been said recently in Wireless World about the fine selection of weird noises that a loudspeaker can emit when there is an electric lamp in the house with a broken filament whose free ends are vibrating and making intermittent contact. I had a
similar experience, but on a grander scale, a few evenings before writing these notes. The loudspeaker began to moan quietly. But the doleful noise didn't remain piano; it grew rapidly in volume and ere I could switch off it had become an earsplitting shriek. When I'd silenced the set I found that the noise was still faintly audible. At first I thought that my ears were still singing, but the sound persisted and I traced its origin to an electric bowl fire, which had been turned on to make flaming June seem a little less like chill December. Switching that off, too, and blessing the ensuing peace and quiet, I waited for it to cool down before making an examination. This bowl fire has a heater element with a screw-in fixing. The screw had worked loose-one of life's deep mysteries is the apparent possession by inanimate screws and nuts of sufficient power of movement to loosen themselves, no matter how firmly they may have been tightened down-and a respectable arc had been taking place between the contacts within the holder. I can assure you that the performance of the wireless set under its stimulus had to be heard to be believed.

Arc Royal

Speaking of arcs reminds me of a spot of bother that we used to have occasionally with what for security reasons I had perhaps better still call radiolocation equipment. The load when one type of transmitter is working is about 16 amps at 230 volts, 50 cycles. The power cable of the transmitter is connected to the generator by means of a hefty plug with good fat pins. Having pushed the plug in you fix it well and truly home by means of a screw-down locking ring. More than once I've known those plugs to be welded solid into the sockets and on one occasion the heat became so intense that the whole lot melted, causing a magnificent short. You might hardly expect arcs to occur in plugs and sockets such as these, or the results to be so devastating with a 16 -amp. current. The trouble was invariably due to the carelessness of one " number," who had scamped the work of cleaning the plug points during " care and maintenance." A little dirt on the points was quite sufficient to cause arcing-and there you were. And yet I never remember hearing of similar trouble with 2 -kilowatt domestic electric fires, where the load is some ro amps and the plugs, besides never being cleaned, are often none too good a fit in their sockets.

A.F. Voltage \& Small-power Transformers \& Chokes for all types of electronic apparatus, in all normal ratings and in a diversity of physical sizes.
1 - Heavily silver-plated non-rotatable solder-tags for connexions.
2 Tropic-grade synthetic-resin-bonded tag boards for high insulation resistance under all conditions.
3 - Colour-coded leads, welded to instrument wire in bobbin.
4 Layered and sectionalised windings of highest-grade h.c. instrument wire.
5 -Synthetic-resin bobbin holding windings in immovable formation.
6 - Bobbin \& Windings vacuum-impregnated and coated waterproof materials.
7 Core shrouded and tightly clamped with maintained iron-circuit and fixing centres.

Over 100 types to choose from.
Please quore Priority Nos. on orders.

A. F. BULGIN \& CO. LTD., BYE PASS RD., BARKING, ESSEX

RIPploway 3474 (5 tines)
(The name "BULGIN" is a registered Trade Mark)

TELEVISION STUDIOS

Tavoid the unpleasant heating effect of the usual high-powered incandescent lamps, the studio is floodlit by the fluorescent type of lamp.

The increased tendency to " flicker" is offset by enclosing the Iconoscope camera in a light-tight casing, which is fitted with a number of incandescent lamps to provide an adjustable "bias" illumination for the mosaic screen. In addition, an adjustable shutter admits a ray from the studio lamps, which is directed against a photo-sensitive layer on the wall of the tube facing the screen. As the current from the AC lighting mains passes through its zero, the ficker from the biasing lamps will tend to produce a "black" pulse, whilst the ray of light coming from the studio through the shutter simultaneously tends to produce a "white" pulse, due to the electrons released from the sensitised wall of the tube. The two effects are cancelled out in the transmitted picture.
Marconi's Wireless Telegraph Co., Ltd. (assignees of O. H. Schade). Convention date (U.S.A.) July 27th, 1942. No. 566429.

SUPER-REGENERATIVE RECEIVERS

THE theoretical advantage of using 1 a high quenching frequency is partly offset by the fact that the "decay" period becomes too short to allow the amplified signal to fall to its input level before the onset of the next "build-up." To avoid distortion from this cause, it is proposed to accelerate the rate of decay by the periodical application of an out-of-phase voltage.
As shown, incoming signals are applied to the first grid of a pentode through a coil L, which is regeneratively coupled to a coil Li and degeneratively coupled to a coil L2, the

A Selection

of the More Interesting

Radio Developments

grid is adjusted so that at the point of the "quench" when the signal amplification starts to decay, the anode of the valve begins to take current and so feeds back to the first grid an out-of-phase voltage which ceases when that grid regains the level of the input signal. During the ensuing build-up, the anode is again cut off, and the sig. nal is taken wholly by the second grid, the circuit of which includes the positive reaction coil Li and the output coil L3.
Ferranti, Ltd.: M. K. Taylor; and I. N. Vaughan-Jones. Application date June 1st, 1943. No. 566209.

TUNING INDUCTANCES

AVARIABLE inductance is coiled on a rotatable drum and is engaged by a grooved roller contact, which is spring-pressed on to the wire of the coil and is so moved laterally along it when the coil drum is rotated by the tuning control.
According to the invention, the grooved roller is also constrained to rotate at a speed which is different from that due to a simple rolling movement, in order to ensure a good wiping contact. For this purpose, the contact roller is keyed to a squared shaft which is driven through cord-and-pulley gear from the main tuning shaft, so as to rotate at a lower peripheral speed than the wire of the inductance coil.
Radio Transmission Equipment, Lid., and C. E. Payne. Application date June 22nd, 1943. No. 567080.

Circuit for high quenching frequencies.
two latter coils being connected to the second grid and anode respectively. Quenching oscillations are fed from a source (not shown) through a condenser C to the third grid, which also takes a variable bias from a potentiometer P. In operation, the bias on the third

CATHODE-RAY TUBES

AHIGHER voltage must be applied A to the deflecting coils to generate a high-speed scanning sweep lasting, say, for 1o microseconds, and repeated every 1,000 microseconds than is re-
quired to give a low-speed sweep lasting for 1,000 microseconds at the same repetition frequency, though the average current taken is larger in the second case. If the supply is taken from a constant-voltage source, it can be shown that a large part of the energy consumed is lost as heat in the power tube. On the other hand, if the anode voltage is made to vary with the velocity of the sweep, much of this waste can be avoided, with a corresponding saving in the size and cost of the equipment.

Two-speed sweep circuit.
As shown in the drawing, the power tube V supplying the deflecting coils L is fed from two separate main supply units, arranged in series with a condenser C. one unit being shunted by a diode D. The unit R is a single-diode rectifier in series with a high limiting resistance. and is rated to deliver, say, 1 mA at 450 volts. The other unit RI may be a full-wave rectifer giving an output of 150 mA at 150 volts. For high-speed operation the slope of the saw-toothed oscillation is steep, and the voltagedrop across the coils L will reverse the polarity of the diode D, so that during the idle part of the repetition cycle the applied voltage is reduced to that of the unit RI, with a corresponding saving of energy. For low-speed working the unit RI supplies the larger current required.
Marconi's Wiveless Tolegraph Co., Ltd. (assigness of O. H. Schade). Convention date (U.S.A.) May 30th, 1942. No. 566877.

[^2]
The Munatid all-qlass techwique

By a corplete Nullard have effect and capacily effects within
from the conventional form of valve aively reduced the losses due glass pressing for electrodes being the lead-out connectio frequencies siderably improved

THE MULLARD WIRELESS SERVICE COMPANY LIMITED, CENTURY HOUSE, SHAFTESBURY AVENUE, W.C.2. (IIGC)

Scienific GiA

for HIGH - HIGHER and HIGHEST FREQUENCIES!

TENAPLAS LTD., 7 PARK LANE, LONDON, W. 1

I am the c.g.s. unit of energy--you'll find me in every radio circuit.

ERG

ERG is the trade mark that will identify our products of qualitysmall parts for big lobs.

Bate 6／for 2 linas or less and $8 /$ for overy additional ine or part therwot，warase lines 5－6 words，Box
 aconpted for arrors．

HEW RECEIVERS AND AMPLIFIERS H P．RADIO

CIVIIIAN radio receivers（aplandid perform ence），ec superhet，$\& 12 / 3 / 4$ ；bettery superbet， $210 / 19 ; 5 w$ ac／dc amplifier．with valves，neat ohassis construction，\＆6／10 Rothermel crystel gramophone pick－ups，78／9 home ac battery chargers，output $12 v$ lamp x2／19／6：maine tranaformers， 80 ma ． $27 / 6$ 120ma $35 /-;$ stepdown transformers， $230-110$ 60 w 30／． 1000 v £6／15；Bell trans． $5 / 11$ ；1s rade line cord 0.3 amp 3 core， $600 h m s$ per it $2 / 6$ per yd；volume controls with witch $4 / 6$ without 3／6．
ROLA 8 in PM spesker，19／6；Celestion 8in， fitted with trans．，29／6；Coletion 31／2in 29／6； Celestion $8 i n$ mains enercised． 2.0000 hm field，with trans．，36／；Vitarar 12in PM 26／18／6；Universal output transformers，7／6 Moico moving coil microphone．5gns；Meico Hoor stends．42／6；microphone trans．， $70 / 1$ ， 8／6；cerbon mikes，2／6；condengers 500v 2mfd 2／6，4mid 3／9．
CATHODE Ray Tubes．－Mullard or Cossor 3 in eleotrostatic with base．$x 3 / 6$ ；GT1C， Argon relaye，25／－i HyR2A Mullard rectifiers， 20／：：Mullerd Universal messuring bridges， 15 gns ；Mullard B100 cathode ray unit with 3 in tube． 12 gns ．
RADIO Valves．－Very large tock；milliamp． meters $0-1 \mathrm{~ms}$ ，highest grade． $31 / \mathrm{pin} 73 / 6,41 / 2 i n$ pair：screened 465 KC IF trangformers， $10 / 6$ pr： 0005 twin ging， $12 / 6$ ．
Alif new goods．Sptisfaction guaranteed． H．P．RADIO BERVICES Rd．I iverpool． 4 CUMMUNICATION receivers．－Remember Ltd．Dale＂After the war．－inale Electronics 1．152－6，Gt．Portland Et．．W．1．Mus 1023 LGH quality recoivers of exceptional per－ models will be now being phototyped two models will be syallable；deliveries to begin
December：limited supplies only；also mult． range ac／dc meter and $1.5-300$ visalve－volt－ meter（ac／dc）；enq．invited．－Box 3505．［3641 （ UAIITY amplitiers， $200-250 \mathrm{v}$ tc． 5 watt （ UALITY ampliters，200－250v wo．＂ 5 watt illustrated lipatiet and copy of＂Mesirn fur Quality＂：immediste deliveries．－J．II．Brier． ley（Gramophones and Recordinge
Mill St．，Liverpool，8．Lark Lane 1709 ．［3796 A MPLIFIERS．－Complete equipment for A．F．A．industrial，dence and stage installa－ tions and portable spparatus trom 15 to 150 w ； early deliveries；illustrations and spec．on request－Broadcast and Acoustio Equipment Co．，Ltd．${ }^{\text {Brosdcest }}$ House．Tombland，Nor－
wich 26970. Wich 26970.1 Kís－New 7－valve＂．Wireless world - Quality smplifier with tone control stage． 8 watts push－pull triode output，price Incluips super Quality triple cone， $12 i n$ permanent magnet apesker．With large ousput transformer and sil valves；slso as ahove but with 15 Wate
duction for public address；limited orders duction for public addreas；limited orders
only： $21 / 2 d$ ．stimp for partioulers，prices，ete． onivi 2lad．Stemp for partivulers，Jrices，etc． AECEIVERS．AMPLIFIERS－SECOND．MAND TALLICRAFTER，SX28，县 new， $500 \mathrm{kc} / \mathrm{s}$ H to $43 \mathrm{Mc} / \mathrm{s} .-\mathrm{OHf}$ to Box 3503 ．［3636 －AILICRAFTER SX16，II．V Xtal．list chester， 20.

M3n－ TALLICRAFTERS Super Defent 5×25 com－ －Box 3519 ．
 LI munications tet，Model 8－22；offers Wanted，－Box 3497．tuner， 14 Fatt $[3612$ HAYNES 2 h．l．tuner， 14 watt amplifier． changer，260．－Write 10，Hill Rise，Cufliey． HOR elo Eddystone communication re－ packi 358 A ，complete with RADIO sets mintifiors Ofers．－Boy 3506. R dries：list free：state needs．－A．C．B． Railo，44，Widmore Rd．．Bromley．Kent．［3806 epesker with pack，demonstration and Voigt lmost unuted．－88，Beaconsfield Rd．，Enfeld． NATIONAL H．R．O．Senior model， 7 coils， contly serviced by webbs perfect condition Offers 引uvited．－2CZH，140，Seymohr Ave． Mordi invited．－2CZH，140，Soymour Ave． 0 VAIVE PX
improved Monodial HF．FC 21 F ， diode 6 －velve plus quality＇PXA，smplifier cry－ diode 6－valve plus quality PX4 smplifier cry： Minor， 210 －Bor 3512 ．
$[3667$

For the past 15 years we have devoted our energies exclu－ sively to the manufacture of Transformers and Chokes． Although we continue to be very active in the field of Research and Development， we are nevertheless giving much of our attention to increasing our range of mount－ ing facilities．
Illustrated above is one of the varied range of styles shown in our Catalogue which is now in preparation．If you would like a copy，please write to us （enclosing id．stamp）and we will send you one immediately it is ready．

O－8，PETTV FRANCE，LONDON S．W． 1

Armstrong

ARMSTRONG has always had the name for Quality．
When this war has been brought to a successful conclusion our new range of ARMSTRONG CHASSIS will prove that our reputation was built on a firm foundation．

[^3] ＇Phene：NORth 3213

SUPER－MONOLIAL sot，complete，loose in S．K． $2 \times 2 \times 14$ oak cabinet with fittod B．T．M．－
R．K． House．S．W．3．E＇veninge Ken．0283．［3609 F DDYSTONE 358X（crystsl filter）communi－ 1 cation receiver， $200-230 \mathrm{sec} 31,000-90$ kc／s，comploto with power unit，now cond． \＆70．－Fitton，108，Buersill Ave．，Rochdale． A MPLIFIER， 40 watt， 4 inputs，separate Garrard sutoohanger，radio chassis，m．coil mike． 2 speakers， $100 y \mathrm{ds}$ cablo；offers．－Box 3521 ． M ARCONI OR100 communicetions receiver 11 valves． 6 wbds．， 100 cyc．，separation crystal gate，service manual．$£ 60$ ；Hallicraf ters 8×25 ，i2 valves，var．selectivity，crystal gate，spare valves，instr．menual，\＆45．－Box
3511 ． NEW LOUDSPEAKERS
$5^{/ 18 / 6 .-N e w ~ B a k e r ~ S u p e r ~ Q u a l i t y ~} 12 \mathrm{in}$ with triple cone permaneat magaet speaker Selhurst fadio，the poneer manufacturers of moving coil speakers since 1925，while fre－ quency range，even responae，iakeg ficr guelity reproduction．fitted with magurl，having ex－ ceptionally high fiux de－isity in the air kap． suitable for public address equipment when qually reproduction is first consideration； send 24 da ．stamp for leatiet giving draila of above sand constructional details it new acoustic chamber designed to extend loud details of en infinite baftle calunet：wery music lover interested in raliotic．rempoduc． tion should write for lealiut
£8／19／6．－Now Haker super power cinema fer－ manent magnet speaker with 18 in triple cone of new design，giving wide frequencs response free from objectionable resonancea；speech is clear and natural and music is reproduced with oxceptional resliam；fine engineering job． extremoly sensitive，ideal for publio address equipment when power handling capacity，plu： realistio reproduction，is required；present de－ liveries of speakers，is required；present de－
 Croydon．Tol．Oroydon 6813

LOUDSPEAKERS， 8 ECOND－HAND

MAGNAVOX Duode speaker：offors．－Bo

FERRANTI M． 1 P．M．speaker，chassis only；
\＆5，or cffor．
［ 3665
B AKERS 18 in pm triple cone，as new；
TVEBTERN Electric 555 A L \＆unit 7500
W EsTERN Electric 55SA L，feld unit，$£ 10$ or nearest．－Box 3507 ，
CORNER horn cabinet，nak，bass chamber： C \＆12．－42，King Chales Rd．，Quintor， Birm． YAGNAVOX，${ }^{*}$ 66，＂in largo labyrinth； Surrey． ［3672 MAGNAVOX 2,000 field，\＆4． 2 in each，bane boice coils， in timber，15／：：Goodman＇s 8in pom．large magnet for projection horn， 40% ；F．T．p．m． horn unit．$£ 4 / 10$ ；Truvox horn unit，p．m．， £3／10；vitavox．K10，new，\＆7．－Courtenay Davis，Harpenden．
［3688

DYNAMOS，MOTORS，ETC
＇IERS．－Large stock of switchbord，volt ，ampmeters，ac and dc；list aralable Molor startors
BA＇lu＇ERY chargers， 230 a ac to 16 v 24amps rotary $\varepsilon 15$ ； 110 v ac to 75 v 6 mps ．valve． \＆15： 110 v ac to 6 v 5 mmps ，metal，£3． 12（OI＇A IRY converters．－－E．D．C． 200 watt． 110 v de to 230 v ac， E 14 ；olectron vibrator， 300 watts 110 v dc to 110 vac a6；Mackie motor alternator． 500 watts， 110 v dc to 110 v ac ¢ 12 ；10：Lang and Squire 24 p do to 230 vac ， 60 watts．$\kappa 8710$ ；（）rompton 1.500 watte． 250 ． c to 230 y ac，e25；Crompton alternetor 3 kw ． 110 v 27 amps 60 cyo ，\＆17．－H．Harris． Strouds，Bradfield，Berks［3648 A LL types of rotery converteri，electrio A motors，bsttery chargers，petrol－olectrio Renerator sets，ete．，in stock，new and second－ hand；supplied against priority orders only． －WARD，37，White Post Lane，Hackney Wick Fi＇rel．Amherst 1393.
NEW mo motors， $1 / 4 \mathrm{hp}$ ，high stertigg torone 200250v．£4／15；／hhp．£5／5；1／2hp，£7／5 machinery CRAMOPHONE AND SOUND EOUIDYMENT． DARMEKO recording machine．latest model． I verv little used，e65；also apare head，un－ ＂18ed．f12－Box 3524 ．with special Duode cone 13 i．000 2 fold； 20 in Eporh 1,000 ת feld； 4ft oak isced sand baffle： 30 watt amp．
PX25AS in push－null；H．M．V．Hyper 8en． p．u．and trans；oflers．－Sergeant，38，Susser Sq．，Brighton．

MORSE EQUIPMENT

MORSE practice equipment for clasaroom or II individusl tuition；keys，audio osclllmari for both batt．or main operation．－Wobb＂s Rarln．14．Soho gi．，W．1．Ger．2089．「2291

SEXTON'S of
 164, Grays Inn Rd., London, W.C.I for
 8ALES, 8ERVIOE \& 8ATIBFAOTION
 ELECTRIC SMOOTHING IRONS, weight 5 -5i lbs., for AC or DC mains, strons bakelite handle snd thumb rest. Fitted with heavy connector guard and rest. Sole plated specially designed for ironing under buttons. seams and pleats. Complete with two yards of best quality three-core flex and earthed connector. Beautifully finished in highly polished chrome and coloured pastel shades, Blue, Pink, Red, Green, Gold. Price 33/4, inc. of tax of 68 . Post free.
 AMERICAN RADIO VALVES. Types as under at controlled prices. 35Z4GT. 35Z5GT 45Z5GT, 5Y3G, IA5GT, IC5GT, IQ5GT, at 11/- each. 6/5GT, 6F5GT, 12J5GT, at 9/2 each I2SJ7GT, I2SK7GT, 25L6GT, 6K7GT, 6L7GT, 617GT. 43G, IA7GT, 6K6GT, 42G, 6V6G, at 12/10. 6D6, 6C6, at 11/-each. 6Q7GT, 75G, at 11,7 each. 6A7G, 6A8G, 6K8G, at 14،- ach. 6U5Z6G5 G, Magic eye, II/ each.
 LOUDSPEAKERS. "Goodmans " Midget spesker, 3 "" $2-3$ ohms voice coil, 30/- each. "Roala" ${ }_{5}$ sp, 21/6 each. "Celestion" with transformer size $8^{\circ \prime}$ PM, $27 / 6^{\text {each. " Magna- }}$ vox " $8^{\prime \prime}$ with multi-ratio trans. PM., 30/each. "Celestion " 10^{*} Mains energised, 2,000 ohms field coil, 35 - each. All post paid. TUNING CONDENSERS. Twin gang . 0005 Midger type, 12:- each. Three-gang ditto, 12:6 each.
 TUNING COILS. Medium wave only. Aerial and H.F., at $3 / 9$ per pair.
 Write to-day for latest list of Radio and Electrical accessories. Enclose Id. stamp and stampedladdressed envelope.
 TERMS: POSTAGEPAID. CASH WITH ORDER ONLY. We regret that owing to shortege of staff we are unable to despatch C.O.D. or send pro-forma invoices.

```
Telephone: TERMINUS 1304-4842.
```


INSTRUMENT WIRES, ETC.

Gauet ooveriac and continuify cuarantood. 14-18-18-20

 $80 /-$ pont free.
MIDLAND INSTRUMENT CO.,
18, HARBORNE PARK RD., BIRMINGHAM, 17.

THESE ARE IN STOCK

RADIO RECEIVER DE8IGN (Part 1). By K. K Sturley, Ph.D., B.Sc., M.I.E.E 28/-. Postage 6d
WAVEFORM ANALY818. A Guide to the Interpretation of Periodic Waves, including Vibration Records. By R. G. Manley, B.Sc $21 /$. Postage 5d.
FOUNDATIONS OF WIRELESB. By M. G. Scroggie, B.Sc., A.M.I.E.E. 17/6. Post 4d. VALYE REPLAGEMENT MANUAL BY A. C. Farnell and A. Woffenden. B/= Postage 3 d .
"WIRELESS WORLD" VALVE DATAOperating conditions and base connections of the principal types and makes. $2 /-$ Postage 2 d .
RADIO SERVICE TEST GEAR. By W. H. Cazaly. 6/- Postage $3 d$
SHORT WAVE RADIO. By J. H. Reyner, B.Sc. (Hons.), A.C.G.I., D.I.C., A.M.I.E.E M.Inst.R.E. 10/6. Postage 4d.

THE CATHODE TUBE AND IT8 APPLICATIONS. By G. Parr, A.M.I.E.E. 13/6. Postage 5 d .
 BOOKS DI TRE COURTEY. WXITE

THE MODERN BOOK CO.

(Dopt W.5), 18-23 PRAED 8T., LONDON,W 2

MODEI TEST EQUIPMENT
40 Avo, all accessories, very good y Al condition.-Box 3520. hard valve time A base; offern.-Boz 3525 . [3652 (). $1 / 2 \mathrm{mc}$ ma moter, scaled 0.500 , FL, fitting () $21 / 4 \mathrm{in}$: $30 /$--Box 3496 . 380 R.C.A. oscilloscope, lin. Mmebase, X and TNIVERSAl, Avo 40, in perl. wkg. cond. U E17.-53, Waterlon Rd., Leyton, E. 10. W世HLANT'I' $\mathrm{m} / \mathrm{c}, 21 / 2 \mathrm{in}$ milliametor, $0-100$ + m.a., pert.; \&3.-Verney, Highbury, Barn staple. perimenters.-Electrical instrument Γ^{1} oxperimenters.-Electrical instruments Rd., Bromley, Kent. [3625 UNIVERSAL Avominor; Collard ac gram [olor.-113, Hazel Rd., longien. [3679 UNiversal AvoMinor, de Arominor, also Taylormeter, Series 45, valve totior, all as new : What offers 1-J. Lillie, Kias Bl., [3591 MEGGER tester, Evershed and Vignoles 200-rolt, 2 parts, moter and generator 60 rondition; 28 or nemreat.-Geo. Bailey WंESTON Anilyzer E772, perfect, as new W in carrying caee, 1,000 o.p.r.; 222, or exch. oscilloscope test gear. etc.-Palmer, Beam exch. oscilloscope test gear. etc.-Paimer, Beam IATEST motel A vo 7. as new. 21 gns ; all IA wave Triplett model 1231 battory oscil. lator, 8 gns ; brand new full wave metal recti flator, 8gas i brand new $10 \mathrm{amp} 35 /$-, 12 -volt $6 \mathrm{mmp} 27 / 6$. flers, 12 volt 3 mp 21,12 volt $2 \mathrm{amp}, 17 / 6$. - Box 3523. CATHODE ray osclllonopese (3in). Avo Model CATHODE ray oschioscope (3in) Aro Moblel lators, signai genorators', hand calibrated cepacity and reslatance bridges, Universal valve testers, components. etc.; enquiries invited offers welcomed.-64, Cat Hill, E. Barnet.
THGH voltage electrostatio test apparatus 1 tests from 500 to 5,250 volte, with visua and aural indication of test breakdown, com plete with special teat prods, easential for al bate for Mrers of electrical apparatus and suil ble or M.A.pi. A.I.D. and Admiraty test KENTISH ELECT
Co 3 HGINEFRING Co., 3a, Mornington st., London. N.W.1: or Euston Rd N. W, Duacais Electrical, 3615 EABORATORY ipparatus.-Sullivan 3-dial Decade reaistance, $1,110 \mathrm{hmas}$ \&9; Sullivan Lineer frequency condenser, 300 pt , $£ 5 / 10$; Weston substandard de millivoltmeter, 15 my f10/10. Cambridze standard dynamometer, 3 range, £15/10; Cambridge Spot galvo, £8/10; Arominor Universal, unused, $£ 7$.-Box 3522. A C/DC test metor, 28 ; M/E valve volt A meter, 23: $2 k / 1 \mathrm{in}$ C.R. tube $55 /-\mathrm{i}$ Acorn rcvi (needs attontion, 210 ; photocelis, ruotor H.T. 9 Eddsatona components Rich and Bund H.1.9, Eddystona compora, 2507 main traun stentorian opk., dotail, Nightingale Lane, Bromley, Kent. [3941 VALVES
A LL B.V.A. valves available, also number of A detail later.-Iondon Sound Labs., Ltd. or c.o.d.-David Hobinson, Ltd., 100, H115t Se. Bedford
COMPONENTS-SECOND.HAND, SURPLUS VALUE! Matt has it!
LINE CORD.-2-way $2 / 6$ per yd., 3-way 3/. per yd. lapprox. 600hms per foot
SPEAKERs.-Celention P.M. $2 \psi_{21} \mathrm{in}$, less trans 27/-; 8in P.M. with trans, 27/6; 61/in P.M (multi-ratio trans), 28/6: Rola 64/2in P.M with trans, 28/6.
TWO gang condensers, 0.0005 with trimmers. 12/6: Midget colls h.1. and aerial, 5/-per pair VOLUME controls (all values), l-switch $3 / 6$. W/switch 4/6, mains transiormers 4 v and 8 v . 2716: Rothermel (crystal) pick-ups, metal. 88 , £3/13/6; Senior de luxe, $\& 3 / 18 / 9$; condensars, all types in stock, 2:8. 8 s .18 8. 20/20. 500 F Wrking; 0.1 it 0.01 , 125 . $0.05,25 \times 25$, etc. Rasiances, $1 / 2$ mad 1 walit ratu TET us quote pou for
I.ET' us quote you for all your requirements. an
Kinger Rad. Thes Richmond Rd. TNBULATED teat pruus with remorable INBULATED teat pruie with removable speaker gauges, $2 /-\mathrm{i}$ many other lines; list 31 port V - E g Redio Monse Melthorne Drive. Ruislip. ${ }^{2}$ [3936 NEW acorns, 954, 955, 956; linecord. 60 ohms per foot, 2 core 0.3 amps, 1 0.3 a $111 ; 3$ core 0.15 a 100 hms , per ft. $1 / 2$. 13/6; plastic wood, large jar, 3/-; Flikodisk ohms. etc., calculator, $6 / 6$; scratch remover polish, 3/. Harlenden, N.W.10. (W.W.). 246, His [3623

R CHIRCFIF HICKLECHARGERS

Trouble-lres Ohareers atted whe melesinm all-metal zootinoation. tood allowance on your old Charefr. Tbirt rroduct. Boolld R.15, denatbins 18 Hedels, on reguent

SALFORD ELECTRICAL INSTRUMENTS LTD,

SOUTHERN RADIO'S wirtless bargains.

LATEST radio publications.-" Radio Valve Manual," equivalent and alternative American
and British types, with all dats, $3 / 6 ;$ Radio and British types, with all dats, 3/6; " Radio packs, etc., $2 / \%$ Amplifiers, fully descriptive illustrated manual of circuita, $2 /-$ ". Radio
Coil and Transformer Manual," $2 /$. Coil and Transformer Manual," $2 /-;$ "Short
Wave IIandbook," $2 /-; \quad$ Manual of Direct Hisc IIome Recording," $2 /-;$ Manual of Dest Gear Cont struction Manual,"
Book." /6;' "Radio Pocket Book, formulas, tables, colour code, etc.; $1 / \because \cdot 10$ Hows for Radio Constructor, $1 /$ SWITC'IIFS, 3-way $4 /-8$-way $6 /-$ (all complete with knobs); escutcheons for 8 -wsy press button switches, $1 / 6$; knobs, pointer type, hlack or brown instrument types. $1 / 4$ inch holes, $1 /-$ each; all types of set knobs
black and browa, $1 /$-inch holes, $1 /$ each; resistances. brand new, wire eaded, $/$ each; and 2 watt, assorted value, mainly low, 30 /. per 100; heavy duty chokes. l.f., 30 henries. 250 ohms, $120 \mathrm{~ms}, 14 /-500$ ohms $15 /=1,000$ ohms $17 / 6$
YAXIFF tylue rotary switches, 11-way, single bank, $6 / 6$ one 1 b assorted screws, 51 . assorted soldering tags, including spade ends, 6/- gross; Nulticon mica condensers, 28 capatities in one from 0.0001 upwards, $4 /-;$ Interaational octal base ralve folders, moulded and paxoline types, $1 /$ - each, $10 / 6$ per dozen: postage tamp trimmers. 30 pf, ceramic and paxoline, $1 /$ each.
SOUT'ILEMN IRA1)IO SUPPL.Y Co., 46, Ijale St.. I,ondon, W.C. Gerrard 6653. [3630 (yPECIAT lines (offered with mones back M. $W^{\text {guarantee }}$
grid coils. $5 /$. nd h coils with circuit, Idit and 2nd, wound Litz $20 / 47$, iron cores, ceramic trimmers, seamlees cans, high q., $465 \mathrm{kc}, 15 /$. per pair; hf mains chokes, $2 /$. each; Paxolin
 output translormers, 3 ratio, $60,90,120 / 1$; welr made, $8 / 6$ each; build your own aet
Wizard tri medium wire unirersal receiver circuit and instructions, 5/:; Dorset battery three medium wave ditto, $3 / 6$.-Write Weldona Radio Acressories, Ltd., 12, Gilbert (HAARIEES BRITAIN RADIO (K. II. Ede)
 doz assorted tubulars, $10 /-;$ No. 2.2016 mfi doz rans. 100 ms choke, 1 maint dropper. 450 p cans, 28 mfil tubs, 24 mfl cans. 216 mfd $25 v$ cans, 24 esstil. tubular and ceramics 22 mfd l.ITZ wound coils, short and med wave $42 / 6$ and Oac with circuit for superhet, $6 / 6$ ea. $465 \mathrm{k} / \mathrm{c}$ i.f. trana., $15 /$ superhet, $6 / 6$ ea.; switches, 3 -pole 4 -way, 4 -pole 2 -way, $3 / 6$ ea, 2-pole $2-w / y, ~ 2 / 9$ es.: 2 -gang condensers with
trims, $12 / 9$ ea. $3-g{ }^{2}$. p type coils, M.W., II.F.A. end Osc $2 / 6 \mathrm{ea}$ PIIIIIPS tubular conilensers. Onc, $2 / 6$ ea wkg., $10 /=$ doz; $5007,8 /$-doz; $400 \mathrm{v}, 6 / 6 \mathrm{doz}$; mi-as, 5/. doz; 00-1005, 3/6 doz; 0001-0005 lwatt, $7 / 6$ doz; resistors, $1 / 2$ watt, $5 / 6$ doz: $2 / 6$ per $1 / 21 b$ reel. SPFAKFiRS.-41/2in Goodmane, with pentode 27/6. ea.; 8in Celestion Fith with trans. trans., $32 / 6$ ein.; less trans, with multi-ratio TlIIS month's aperial offers., 21 mfd M. conclenacrs, ex (i.P.O., $8 / 6$ doz: 1 mfd Mansbridge transformers and osc. coils, $110 \mathrm{k} / \mathrm{c}, 5 /-$ per set. Send sa, e. for latest ligt: terms, cash or c.od. over \&l.-Charles Britain Radio, (temp. ardiress) "Fi- Fureks" Surrey Gardens, Fimng.
ham. Surres. TARK RADIO SERVICE, 27, Upper Bt., SPEAKFRS with outpnt ransury 1384 A. 6IKin 22^{16}.

 1.140 field; less iransformer, (ioodman eathin 30/- Goodman $12 \mathrm{in} 126 /-$ It, 2-war 10d fuper quality, $30-70$ ohms per 'fi ANSFORMFiRS, mains 200-250 prim. econdaries, $300-0-300,80 \mathrm{ma}, 4 v 21 / \mathrm{m}$, 8 ma $120 \mathrm{ma}, 4 \mathrm{y}$, $4 \mathrm{a}, \mathrm{Si}$ 3a, $32 / 6$; 320-0-320, nulti ratio and centre tap, 8/6, $38 / 6$; output, hiultiratio and centre tap, $8 / 6$.
ang, serien), i)A. 30 , P.X.25. PX (oxcept 0.15 any terien) 1).A.30, P.X.25, P.X.4, PEN.B.4 3Q5, I.N.5, I.I.S, I.C.S, 75, 43, 18, 6C6,

 SOI,DERING irons-Solon industrisi model, 13/:; pencil bit model, $14 / 3 ;$ replecoment PARK RADIO SERVICE, 27, Upper St., N.1.

NOW TITHWUISOWI

GRAMOPHONE AMPLIFIER CHASSIS

4-VALVE, 4-WATT

Aseembled on black Grackle-Anished chasala fitted with reparate Tone Control Volume Control whith on/off switch, sockets for microphone, gramophone and extenalon speaker. only. lnput $200 / 250$ v, Bize overall, 8 $\times 7 \mathrm{in}$. Ready to pley. Price, 10 GMS.

4-VALVE, 6-WATT With PXA output. specila-
calion
an sbore
Theorefical and practical Blue Printe of
the above avallable separately. $3 / 6$ per set.

BLUE PRINTE

of the following circuits. Theoretical and Practical. 8/6 per net of 8 (1 Theo, and 2 Prac.) Ne_{i} 1. A.C. T.R.F. 3 relree, Medium wave only.
 Nin. A, A.C. T.R.F. ${ }^{4}$ valverhet ghort Wave only. Nove 6
No. 6. A.O./D.C. Buperhet, \& talven, short and No. 7., Battery T.R.F. 3 ralven. Long. Medium Nad Short Wave. A. Battery T.R.F. 4 valvea, Long, Medium and Ahort Wave
No a. Battery T.R.F. I valves, Bhort Ware only.
No 10. Battery T.R.P. 4 valves, Bhort Wave रo, 11. Battery 2f watt Amplitier, 3 ratvea Puah, Pull.
No. 12. A.C. Superhet, 5 valvee, Ulira short and short Waves, 8.100 metres.
and Short W./D.C. Superhet, of Valves Ultre Bhort 1o, 15. A.C. 8uperhet motre:.
No. 16. A.C./D.O. Superhet 7 Valves, 5-760 metres. Priced lit of componeuta sent with each eet of Blue Printa.

FOR OVERSEAS READER8
2 New Tropical Circuits
No. 17. fmall Communioation Type AO and fcation: 6 Wiavebandi, B- $-2,000$ metref, ReciFrequency stame, 7 Valves. Int Octale includtas beat frequency oec, and rectifier, $465 \mathrm{k} / \mathrm{ca}$. Orerall measuremente : $16 \mathrm{in} x$
8 in . $x 8 \mathrm{la}$., in bleck crackle toish. Shorty 8 ln . x 81 ln . in bleck erackle finiah. Shortly No. 8 A Betters 4-valv
hands, $16-50,200-567,700-5000$. 3 WarePriced liat of colvo7, $700-2.000 \mathrm{~m}$.
of Blue Printe. $3 / 6$ per set of 3 .

MAINS TRANEPOMMER to Eutt all otroulte
built to specification. Bee lant month's advertisement for gtandard Modejs
WESTECTORs, WX $6,4 /$ -
ULTRA S.W, COILS (plug-in) atr apeced, silver
 set of 3 .
3 WAYEBARD COILS, 16-50, 200-650 and 900. 2.000 m . (on one former) A and H.F. also A and Usc., $12 / 6$ pair.
Togete gwitohes. Midature, on-ofi, single pole,
$2 / 6, ~ D . P ., ~ D . T ., ~$
/3.
Metal Rectifors, small, chaesis mounting 48
volta, $40 \mathrm{man}, 7 / 6$ anch.
Chasis, silver aprased, undrilled, $10 \times 8 \times 24$,
$7 / 6.8 \times 6 \times 2 \%, 4 / 6$.
8 mall 2-rang .0005 Condenger fited with - puan button switoh. 8/6.

TO OVEREEAS TRADRRS I Wholeaale and Ketail knquiries aro inviled.

Orders can be executed for B.L.A., C.M.F. and
G.A. RYALLL 36, Furon Rd., London, G B.W.17. Mail order only, no co.d. under 21 ploase
VOLUME conerols, with switch, $3 / 9$ meg screoned mpriect job, long spindle. 4/9, twin CONDENSERS, tubular. 0.1 3507 wkg. rellable make, $7 / 6$ dozen, 0.002 4507 wkg, moisture proof, $4 / 6$ dozen.
$10,000,22,000, \quad 33,000,220,000,470,000,2$ mog, insalated type except $33,000,3 / 9$ dozen. CELESTION 10 in permanent magnet apeakers. very powerful magnet system, really excellent MF,TER switches, long spindle, 11-way, new, take lin behind janel, 3/9 each.
SPECIAL offer connecting wire as push back. stranded, cotton and waxed inalation, finished double cotton blue, 12 yards, 1/6, 50yds 5/3. RADIO REPAIR SERVICE, 36, Stoneyfields R Lane, Edgware, Mdx. Mill Hill 1901. HIGH-GRADE components at the lowes prices.-We are able to offer the following new goods:-
P.M. speakers, less transformer. 21/2in 22/-
 also with transformer, 10 in $32 / 6$. 8 in $22 /-;$
0.3 amp 3 -way line cord, $60-70$ ohms per foot, in 10-yd. lengths, 15/, length; auto translormers, $240-110,75$ watts. 18/- each; output transformers, midget, $5 / 3$; power pentode,
$5 / 3$; standard pentode, $5 /-$ special heavy duty $5 / 3$; standard pentorle, 5/-; special heavy duty
pentode, $6 / 6$; multi ratio type, $7 / 3$; inter valve transformers, 3-1 and driver class B. $7 /$ each; 1.1. chokes, midget, 360 ohms, $5 / 3$; 60 m.s. 20 hys. 500 ohms, $6 / 9 ; 100 \mathrm{ma}$. 32 hys 1,000 ohms, $13 / 6 ;$ assorted condensers, 0.00008 to 0.15 mfd , at $8 /$ - dozen; $8+8 \mathrm{mld} 450 \%$, $5 / 6$ each; limited atock; eerial and h.f. coils, 3/3 per pair; Midget-2-gang condensers, 9/3; iron cord i.f. coils, 465 ks, in cean, $20 /$ - per pair. GOODS sent only c.o.d., carriage paid tor orders £5 and over; under £5, 6d. for postage. R ADIOSALES, $1 / 4 C M / 8 A L E S$, London, tubular paper condensers, usual prices.
BIAB ELECS., $50 / 12 \mathrm{v}, 25 / 25 \mathrm{v}, 10 / 50 \mathrm{v}, 2 / 6$ SPEAKERS, $31 / 2 \mathrm{in}$ p.m., Goodmana, 3 ohm, STANDARD 465 screened i.f.t., $10 /$.
SMALL 2-gang, 0.0005 , trim. and feet, $15 /$ VOL controls, $5 / 6$ with sw.. $4 / 6$ less sw.
SPEAKERS, p.m. 8in Rola or Plessy, $28 / 6$; $61 / 2 \mathrm{in}$ do., $30 /-$; 11 with trans.
BOOKS.-Radio Test (iear, 1/6; Radio Pocket Book, 1/-; Radio Valve Manuat, $3 / 6$; Kadio ('ircuit Manual, 2/-; Amplifier Manual, $2 /-;$ all useful reference books.
STANDARI) electric soldering irons, 60 w , $230 \mathrm{v}, 14 / 6$; solder, tags, crystals, tape, flux, wire. sleeving. all smalls, competitive prices. FVERYTHING c.o.d. or C,W.O.; post extra;
4-page list 1d.-Radiosales, BCM/BALES, Iondon, W.C.1.
[3673
PRICE list 1d., maequalled range example -Taylor, Macaulay St., IIudderafield. [3595 I OOK out for valves and circuit analyser; LA details later,-London Sound Labs, Ittl.
40. South Molton Lane, Bond St., London. W.i. SUPREME RADIO, 746b, Romford Rd. Narchanor Park, London. E. 12 and at 15.
Faircoss Parade, Barking. Tel. 1 f . 1260 . Fst. 15 years.
line cord, 60 ohms per ft, best quality, $2 /$ yard; 0.2 mains droppers, 1.000 ohms, 2 sliders, good job, 3/9; 0.2 Pye replacement droppers, 3/6; limited number at these prices; gain, good selectivity, with circuit, $8 / 6$ pair, less circuit $7 / 6$; job line American m. and 1. aerial and h.f. coils. $3 / 6$ pair: Midget m.

and f., with circuit, $10 / 6$ pair, boxed; Yexley awitch lor same, $3 /$ each; Midget 2-gang 0.0005 , with trimmers, split vanes, fixing brackets, $12 / 6$; dials, $31 / \mathrm{in} \times 4 \mathrm{in}, \mathrm{m} . \mathrm{w} .01 / 9$; 25/-: Celestion 6in, with tran., 27/6. less 22/6; Celestiou 8in with tran., 26/6. less 21/6; Rola 8in, with tran., 26/6. less \&1/1; 32/6; Midget chokes, 60 mils, 6/6: 100 mils. 10/6; heavy duty, pecially wound for good job; trimmers, 35 and 40 p.d.f., 9d, each. METAL speaker cabinets, 8 in fitting, rubber clear 17/6; our technical dept. will zilways help customers in their problems; list available on request for goods not advertised; sa.e. | all enquiries: 6d. extra for postage orders |
| :--- |
| under $£ 5$; mo co.d. |
| 3647 | MASTERADIO vibrator pack, 6 v , new, $40 /$ MM22, each $9 /-1$ IH5G $6 /-$; Pathe Kid projector, 40%-.-Carson, Wimborne, Domfries.

LODOE, IESe

LATEST ADDITIONS
Type V74. 350/0/350 v. 75 ma., 4 v. 21 a., 4 v. 4 a. ct.
Type V76. As above but 5 ... 2 a., 6.8 v. 4 a., ct.

Type $K 450 \mathrm{H} .450 / 0 / 450 \circ \mathrm{v} .250 \ddot{\mathrm{ma} \text {. }}$ $4 / 5 \mathrm{~V} .3$ a., and two $6.3 \mathrm{v}, 4 \mathrm{a}$. ct...
Type OP6. Multi ratio 15 watt output OP12K A.' \quad KIVa. Sectionalised driver, 3/1.. KIV3. Sectionalised driver, $3 / 1 \ldots$
DV3. Driver trans. 15,20 watt amplifiers

Audio Amplifier Equipments from
E12.10.0.
Transformer Catalogue T55, Audio units V65 ($2 \frac{1}{2} \mathrm{~d}$.).
Write for full specifications before designing your own equipment, we also have a blueprint serviceon many pieces of apparatus. 15 watt, 20 watt, 32 watt, 2/6 ea.

Dealers address your enqulries to "G.L. Dept." for Trade Discounts.
RADIO INS'

TRUMENT CO.
Radio Products 294 BROADWAY.
BEXLEYHEATH.KENE

POLYTHENE insulated concentric cable 7 strand copper, close woven acreen, synthetio covered, ideal down lead and hi conductor, $3 /-$ per yard: 20% discount to trade in 100 yd colls; cash with order. curriage Iwd. PURE polythene, the last word in insulation, requires heet only for application; $4 / 6$ per lb ., post pd. no engineer can allord not to try it. CHARGING plant, 3 -phase input, metal rectifiers, output 45 volte 250 mps , new and unased, 3 only; 280 each; seen in London.
MOTOR generator, 3-phase motor, direct coupled to 1,050 volt, 1 amp generator with separate 16 volt low tension output and 100 volt erciter, complete with control panel, mounted aboro in metal cabinet; best offer securet. GENERATOR set as above less control panel. CONSTANT voltage transformer, input 160 260 y Socycle, output 220 y stoady, capsacity 3.6 kva e 80 ; new.

FILAMENT traniformers, 220 vinput, outpat 45 F 250 amps ; $£ 15$ each.
WATSON, 69, Lavender Hill, B.W.11. Tel. Bat. 8485. C ONDENSERS, electrolytic, 16 mid , 350 V Midget medium wave coils, with adustable iron cores, serial and h.f., $5 / 6$ pair: Bakelite 1 am sheet, $\mathrm{y} / \mathrm{Hin}$ and $1 / 2 \mathrm{in}, 3 / 6$ and $7 / 6$ gq tt , cut to any size.-Holland, 12, Blandfield Rd., London, S.W. 12 .
[3613
THENRY'S ofler:-T.R.F. medium and long cuit single pole oleven way two bank cuit single pold oleven why whg $2 / 3 ; 16 \times 16 \mathrm{mid} 350 \mathrm{w}$ wg $10 /$ - i line cord whe $2 / 3 ; 16 \times 16 \mathrm{mid} 350 \mathrm{~F}$ we $10 /$-in ine cord 0.3 three way 550 hm per pir $3 /$ por ydi 0.2 1150hms per it $3 /$, per ydi Rola Sin P.M. with trantormer, ${ }^{27 / 6 ;}$ Goodmana Sin, transtormer, $21 / 6 ;$ Celestion 8 in, former, $21 /-$ Celestion mphenol valveholders,
 octal 9d. each, ${ }^{7 / 6}$ daze coils, merial and oscillator, 465 K.C. 12/6, with complete ac/dc circult: i.f. trans. $12 / 6$, with complete ach esch
HENRY'S, 5. Harrow Rd., Edgware Rd., LonHENRY'S, 5. Harrow Rd., Edgware Rd.. 3656 COULPHONE RADIO, Btation Rd., New COLLPEton, nr. Prenton.-New goods only of the bighest quality; all orders attended to same day as received; note price reductiont on many lines, and remember that all orders over 5/- are post free; electrolytics, $8 \times 450 \mathrm{v}$
 $50 \times 1 \frac{1}{2} 2 / 6,25 \times 503 /-50 \times 503 / 3$; Rola, Plessey, Goodmans and Celcstion apeskers,
 21/6, 8in 22/6, 10 in $35 / \ddot{i}$ with transf., 6\%in $27 /$ - 8in 27/6, 10 in 42/6; Vitavox super quality 12 in p.m. K12/10, $86 / 13$, mains transformers, screaned primary, 200.250v, 350-$0-350,100 \mathrm{ma}$, with 4 v or 6 v 1.t.t. $26 / 6$; bob bins only, 15/6; 425-0-425, 200ma, 47 8a
 20 hy 200 ma chokes, heavy duty. $21 /$-i apeaker transiormers, push pull universal types, 4 watt $8 / 6,8 w / 12 / 6,15 \mathrm{w} 21 /$ dis 30 w 37/6: Midget pen, 5/-; dropper resistors, 800 o 0.3 s . with foet and two sliders, $4 / 6$;
 Delafoz 2 mm sloeving, $2 /-$ dozed; valveholdors, 5, ${ }^{7}{ }_{i}^{9}$ pin Engliah, Mazdia octal, 4 , $5,6,7$ pin UX and Int. octal, all types $6 d$. each; resin-cored solder 4/- Ib, ${ }^{3}$-way cable 6d. 5d, 5-way 10d.; line cord,
loot,
iuper quality, two or three-way, foot, super quality two or three-wa
per yard; s.a.e. for comprehensive list.
TELE-RADIO (1943), Ltd., for brand new 1 good quality components at manulac turers list prices. Suppliers to protessional constructors and amateurs who want only the best. Weston meters, 250 micro amps, centre zero reading, $23 / 5 ; 0-1 \mathrm{~mA}, ~ £ 2 / 10 ; 0-500$ micro ampa, e3; 0-100 micro amps, e3/15; $0-50$ micro amps, $£ 4 / 10$: 1 mA instrument rectifers, $12 / 6$; epot-on wire wound precision resistors, plus or minas 0.05%, $5 / 6$ each (ap to 50,000 ohme only): single-pole 12 -position switches, $3 / 6$ each; 4 pole 3-why, 3/6 each; cathode ray tubes, G. RC. $11 / 2 \mathrm{in}, 22 / 15$; Cossor 23D. 2K/in, $23 / 6$; Cossor 26D, 41/2in, f6/10; Cossor GDT4B gas-filled triode, 24/4: high-voltage rectiflers and condensers; potantiometers carbon 4/8; with awitch, 6/6; wire wound, $6 / 6$, usual values; crystals, 100 Kcs, 45/- (P.O. permit) Rothermel crystal pick-ups, $23 / 13 / 6$ and $23 / 18 / 9$ (high fidelity Red Label 10/-extra); Celeation and Vitavor speakers; 0.0005 2-fang condensers, ceramic insulation, with s.m. drive, 18/6; Wavochange switches, rariable condensers and trimmers, etc.; comprehensive stocks of British and American valves; steel racks, chassis, panalis and cabinets, any ipecincation (callers only; postal enquirtes acknowledged same day; cash and packing extrí on all moodn.-Tolo-Radio (1943), Itd., 177 a. Edgware Rd., London, W.2. Tel. Pad. B116. [3898

RADIO SPARES

coondaries 350-0-850 Foll

$\begin{array}{ll}\text { Type O. } & 100 \mathrm{~ms} \text { Ratinge se trpe } \mathrm{A} \\ \text { Type D. } & 100 \mathrm{~ms} \text {, Retloge sitpe B }\end{array}$

Type F. 200 ma m. Rathge as type B

for rectiller. Ratings as required
Trpe J. 200 reondarien $500-0-600$ voik. I $\quad 47 / 6$
$\begin{array}{lll}\text { Trpe J. } & 200 \mathrm{ma} & \text { L.T. Findinge en type I } \\ \text { Type } \mathrm{K}, & 200 \mathrm{~ms} & \text { L.T, windinge an type H }\end{array}$

Type M. 250 ms L.T. wiadlingso mot type H
Type M. 250 ma L.T. Windinst es type
Type N. 200 ma L. T., whallages typo H.... $47 / 8$

Typa R 120 mondarien 400-6-40t volla.

Type U. 80 ma L.T. winding
Type V. 120 ms L.T. windiage as type R.... $39 /$
Typee Hit 0 are provided with two L.T, windinge, eenkre
tapped, note that owtog to dimensiom and welsht of typee I to 9 . Ktadly add $9 / 8$ for carriage and packing.
MULTI RATIO OUTPUR TRANSFORTR, 120 ma 15 whens, tapplaty for fll6's in push-pull ; PX4's in pushpull; low impedance triode: low hmpedsnce pentode; high tmpedance triode, $87 / 6$ seck Unit.

H. W. FIELD \& SON

OOLOHEBTER ROAD, HAROLD PARK, EESEX

ROMAC RADIO CORPN. LTD the hyde - hendon - london n.w.g

Designers and Makers of RADIO \& ELECTRONIC DEVICES

WAPD rotary

Patrol Electrlc Gonerating Plents, H.T. Generatori, D.C. Motors, Frequency Changers, tec., up to 25 K.V.A. BHAS. F. MARD
37. WHITE POST LANE, HACKNEY WICK, E. 'Phene: Amherst 1393

DEFINITELY an

Unsolipited Testimonial!
Read this extract from a letter recently received:
"I have been advised by professional operators (radio) to learn the code the 'Candler Way. would be grateful if you could send me a copy of the Candler System Book of Facts'."

NOTE: The original letter can be inspected at the London Office, and also the original letters of all testimonials quoted in our advertisements.

THERE ARE CANDLER
 MORSE CODE COURSES

FOR BEGINNERS
AND OPERATORS.
Would you like a copy of the Candler "Book of Facts"? One will be sent free, on request.
THE CANDLER 8Y8TEM CO.
(Reem 55W), 121, KINESWAY, LONDON, W.C. 2
Condler System Co., Denver, Colorado. U.S.A.

RADIO and oleotrica ingineers.-Ez-Govt aide ontters, $22 / 61 / 4$ doz. ; lons nosed in crriase pald cuaranteed brand mew, min trensformers, 4% or 8%, hestere, $80 \mathrm{~mA}, 28 / 6$; tran mA, $37 / 6$; mniti output traniformeri standerd size, 6/6; onrrise peid ordera \&5; s.2.e. tor list radio spares.-A.D.B. Co., 881-3-5 Ltchfield Rd.. Aton Birminghsm, $6 . \quad[3299$ QERVICLMEN.-The following productr are - woll designed end of htrh quelity; volume controle, carbon tyne, all values, with or lens witoh, Fire-wound resistors. 1 to 60 watte: dropper reststors, 0.2 and 0.3 amp; line cords and rezor resistorn; terme and quotations on req.-Darolo. Ltd.. 35. HIrh Bt.. Rulslip, Mdx. BUY your components direct, and save 3 pounda. Botld our MW. Super Victory Four." Highly stisfied users everywhere; circuit, drilled chassis, brackets, rivets, and everything to build thin excellent $4 y$ ec/dc et is supplied for $£ 7 / 19 / 6$, cabinets: $\& 2 / 2$ detailed circuit separately. $1 / 6 ;$ chassis, $4 / 6$ chassis, valveholderm, spener, 2-sang con denser and dial, atl assembled, e2/19/6; dia MW/8W: Rold/black, punched for disl lamp $1 / \cdot ;$ sand 1 d . 10 r interesing ists.
BUĆCLFUCH RADIO MANUFACTUREHS, 1 and 2, Melville Terrace, Edinburgh.
TINECORD, $0.3 \mathrm{amp}, 3-\mathrm{Fsy}, 3 / 6 \mathrm{per}$ Fd; un 1 drilled chastis, $8 \times 7 \times 2 \%, 3 \%$ ea, doz lots t $2 / 3$ en.; volume controle, $0.25,0.5,1.0$ mer. short spindles, no switch, $2 / 6$ ea.; Ameri can oct. valve-holdern, $7 / 6$ doz: 2 mm sleoving. $2 / 9$ doz yds: reain cored colder, $4 / 6 \mathrm{lb} ; 18 \mathrm{G}$ tnd. cppr. Wre, 4/. 1b; Midget medinm wave coils, 5/-pair; Midget 60 ma chokes, $6 / 6$ ea. Mrultitap output tranuformers. $8 / 6$ es. ; 0.2 amp droppers, $5 /-; 0.3 a m p, 5 / 6$ es.; both with Axing feet; mains trantormer replacoment bobbins. 4 . or $6.3 \bar{F}$ heaters, 17/6; electric soldering frons, 12 i6; black set knobi, bushed. 7/6 doz; "Maico" moving coll microphones, massive all-chrome quality job, 25/5; solder tags, 2/- grois; etc.; large stocks valves, all service requirements, list $1 \mathrm{~d} . ;$ orders above 10/- post free (mail order oniy).-A. Huckelsbee, "Faziejohn," Crofton Lane. Orpington.
BATTERY charger kits, rectifers, mikes, fier 2 T 0.5 amp type, with tics. metal recti Ideal trickle charger lor 2 v wirelors coll, with circuit. $13 / 6$, postage 7 d .; metal rectifier 12 F 2.5s type with transformer and ballast bulb for $2 v$ to 12 v charger, needs no ammeter or rheostat, $46 / 6$, post $10 d . ;$ metal rectifier 12 v 2.5% for battery charger, $22 / 6$, postage $8 d$: special charger kit for 67 car battery boostiransformer and ballast bulb, 39/6. postare 10d. also metal rectifier 6 V 1.5s ifpe with transformer and balliset bulb for $2 v / 6 \mathrm{v}$ charger, $32 / 6$, post 10d.; metal rectifier 12 V 1.5s type with transformer and ballast bulb lor 2 v to 12 F charser, $37 / 6$, ditto junjor model with 1 mp rectfier, $32 / 6$, postsge 9 d ., or rectifer mpone $8 / 6$, post 5 d ; trimsiormer, motal rectifier, bsilast bulb to charce three to twenty $2 v$ cells at 1 amp, weight $18 t \mathrm{~b}$, ideal for small radio store, e5/10: matal rectifier 12 F 3 Bmp fith transformer for 12 c chsreer. 52/6. post $1 / \%$ also heavy duty type trans. former with laree 12 v 5 mmp rectifier for 6 v / 12 v chsiger, e4/10. or with 4 mmp rectifier, 12v charger, e4/10. or with 4 amp rectifer, tapped 10% Westing house rectifler, 25/-, post 9d.
CHAMPION. 43. Uplands Way, London, N. 21. CHAMPION. Iseb. 4457 . Uplands Way, London, N.
[3686 TMEE Simplex Four, complete onntructional - details of this most saccessinl midget ac/ de recoiver (totsl cost of constraction e9) including theoretical and full scale. is vout wiring diagrams. with instructions, $4 / 6 ;$ Micret high gain t.r.f. m weve colle, 7/6 pair; ditto mid get m ow ave coils, $10 /-$ pair. aeris and osith To 485 . an mehed pair, with circuit 151 .ip. 15/-pair; midget I.F. transiormers. 465 k.c.s, $17 / 6$ psir: standard size ditto $1 . \mathrm{F}_{0} 0$ trans formers, $15 /$ pair: midgot 2 gegeng $0.0005 m$ in Variable condenser, $13 / 6$; simnlez midet frine tole $11 \times 41 \times 2 i n 718$: midret m Fave fixing holes. $11 \times 4 \times 21 \mathrm{n}, 76$: midret m wave ing , $61-0$ modinm chole ing chokes, 50 mis $80 \mathrm{ma}, 25 \mathrm{H}, 9 /-; 120 \mathrm{ma}, 25 \mathrm{H}, 15 /-;$ midget
 8/6; Rols P.p. tapped, 12/6: push button 6W8y unit, escutcheon. knohs, 5/6; insulated interferance suppressor, sc/dc, 2/6: Goodmans
12in suditorium P.M. 15 ohms seech coil, 12in saditorium P.M. 15 ohms speech coil, $26 / 15$; 8in P.M. with tran., $27 / 6$; 61/2in ditto. tapped tran.. 25/:i M.E. 1.200 ohms. R E A. 8in, $35 /$ manis dropper. 0.3 amp , 5/6; ditto droppert the hest, 0.3 snd 0.2 mp, $7 / 6$; ditto 0.3 smp, 260 ohme, $3 /-$; comprehensive stocks of sll componente; liste monthty, 21/d. stimp With enquirios ploae, pontere all orders.Heath Rd., London, E. E.

ELECTRADIX OFFERS!

HEADPHONES, MOVING COIL P.M. 45 ohm., itin. coil, I ifin. overall, in bakelite case with 3 in. Iront flange. Coil is energised by the famous ALNI Magnet. These units also make excellent speech mikes, or, with a matching transformer, they can be used as a miniature loud speaker. No headbands available. Price per pair, $24 /$., or $12 / 6$ for one unit. This is one of the finest Electradix Bargains ever offered. Moving coil headphones with Brown type double steel headband and cord, $29 / 6$ per pair.
BELLS. Large Tangent A.C. $230 / 50$ volt ironclad bells, new condition, 6in. song, 42/w, to Tiny Townsend Buzzers at 10/- each.
BATTERY CHARGERS. " Lesdix " Nitnday models, metal rectification, 2 voles 1 amp., for wireless cells, to large chargers for your car accumulator. Send for special Leaflet "W."
LABORATORY AND TEST GEAR
MEGGERS. Evarshed Bridge Meggers with Resistance box, as new, but store-soiled cases, few only.
RADIOGONIOMETER Direction Finders, in polished case, 4410 s.
GALVANOMETERS. Tinsley M.C. Ballistic, Vertical Mirror Reflectint type, 100 ohms., CS 10s. Sullivan Marine Reflecting Galvo., with M.C. Suspension, 69 10s.

RELAYS. Siemens' High-speed Relays in heavy brass case, 1358. Tslephone type No. 6. 2-coil polarised, S.P.C.O., 6 voles 25 ma., 325 ohms., es. 6d. No. 1A. S.P. on-off, 2 volts $40 \mathrm{ma} ., 5 \mathrm{~s}$. Relay movements 1,000 ohms., less blade and contact, 2s. 6d.
METERS. D.C. Moving Cail Milliammeter O-1 ma, 100 ohms resistance, 21 in . flush panel, bakelite case, 13.
Instrument Rectifier, I ma., 10s. Sd. B.S. SubStandard M.C. Voltmeter, Sector shape, polished wood base, 5 in . scale heavy bakelite terminals, double reading, $0-15$ and $0-150$ volts Mirror Scale, Zero adjuster, 6 ma , F.S.D., CS. Portable 3-range D.C. Voltmeter, $4 \mathrm{in} . \times 2 \mathrm{in} . \times 4 \mathrm{in}$., Zero adjuster, $75-150-300$ volts, CS.
TRANSFORMERS. 3 kW . Crypto 230 v. to 115 v., shrouded, 112.3 kW . Metwick, 50 cy . 400 v . to $600 \mathrm{v} ., 69$ 10s. I kW. Powquip 50 cy . 250 v. to 50 v. 20 amps., C9. 500 watt Foster 50 cy .440 v . to $110 \mathrm{v} .5 \mathrm{amps} ., \mathrm{c} 415 \mathrm{~s}$. 150 watt Foster 400 cy .230 v . to $15 \mathrm{v} .10 \mathrm{amps} .{ }^{2} 2 \mathrm{ISz}$. 5 wate H.T. test Transformers $110 / 220 \mathrm{v}$. to 1,000 v. 5 ma., 10s. Current transformers for meters. Various sizes in stock.
TRANSFORMERS, FOR RE-WIND 3 kW . New type with stampings $4 \times 6 \times 7$ in., windings damaged by blitz. Can be taken apart to make a number of emaller units. Weight with damaged wire is 65 lbs. Limited number at 45 s. , carriage -xtre.
SUPERSEDERS. H.T. Battery Suparseders for Radio Receivers. 6 voles input, $110 \mathrm{v} .15 \mathrm{~m} . \mathrm{a}$. output, 12 voles input, 230 v .30 m .2 . output. The Army, the Navy and the Air Force use small Rotary Superseders, a 5 lb. midget type taking less space than your old H.T. Battery. Last for ever and cost little more than a few months run on H.T. Battery. Size is only $57 \times 3, \times 31$ in., beautifully made, model finish, ball bearings, etc., and takes small currene from your accu. Latest model and guaranteed 12 months. Price $\mathbb{1} \mathbf{1 5 s}$.
HAND MIKES for announcers, broadeasters and recorders, hand type by Tannoy, and Truvox mulsi-cell carbon type, weatherproof, suitable for hall or outdoor use, with neat switch in handle. hall.

Please Include postage fo wall arders.

ELECTRADIXRADIOS

LASKY'S RADIO

Are able to euppiy from atock immedietely the followin: first class and brand new radlo and electricel components SPECIAL KIT OFFER, ONE MONTH ONLY 30 Aseorted Oondangers, congletions of 8 only s-mid, tubulare, 600 volt $\overline{1}$. One $16-\mathrm{mfd}$. 460 Foll (Wet can). 2 only 4 mid. 680 volt $w-$ and 2 mid. 750 volt W. block paper condensers. 1 mid . 800 roit W. oto., otc anteo. 8 and 15.6. Poot tren.
Rola Elo. P.M., 21/6: 81/0. PM M
10, 216 ; 6ila. P.M., 28/6 : Bta. P.M.
 21/9: Bla. P.M., ED/6. Goodman' 101a, P.M.
LARGER SPEAXERS II gTOGE. PRICES ON APPLCATIOM.
Foineme oontrole, all ralues, lons apindie, leat ewitch, $3 / 9$, wh ith itcols, $5 / 6$.
Helns dropport .2 and .8 amp., With Aring feet, Line oord, beat qualtity 2 and 3 -way 75 ohms, per foot, $3 / 3$ yard.

Primariee $900 / 250$ T. i Secondarles, $850-0-850 \quad 7$. chrouded with firing foet. (B$) 100 \mathrm{~m} / \mathrm{s}$. 6.8 F . in ampe 57.2 amp.g with foet $32 / 6$. (0) $120 \mathrm{~mm} / \mathrm{m}$. iv 4 amp., 47, 21 amp., whth teet, 85/6. And other types in atock Prios, otci, on applicetion.

TUIVA cond masen
0005 MIdget, 2 and 8 -gang, leen trimmers, $18 / 6$. .0005 Midet 2 - and 8 -geng, with trimimer. $1 / / 6$. .0005 Midget 2 ganc condensers Whth caramio trimmers ahort wave dia, $18 /$ /.
Togels witehes from $1 / 9$ woh, Y.R.T. Ooile with cirewit modium ware type, $8 / \beta$ patr. Viey high patn. Imediun and Lons Weve Colls, with ctroute, T.B.F. bpe, $10 / 6$.
VALVES. Wo have over 7,000 new Amorican asd Rngliah malne and battary Favea in stook at B.O.T. Lat prions. Sand us your requiremonts. frot of all goods.

LASKY'S RADIO
364, 370, Harrow Road, London, W. 9

for A.C. and D.C.

2VAColl consump= tion from 2 to 600 voles and tested to 2,000 volts, Aerlal change-over Relays, Mercury Relays, Mercury Re-
lays, Measuring lays, Measuring
Relays, and Time Relays, and
Delay Relays.

Ask for leaflet
Midget Reloy M.L. (For D.C. only)

205/WW

LOMDE

GTRONG steel ohessis, $6 \times 9 \times 21 / 2$, drilled four fain holes, 1.0. sockets, three control holes, izins feet, snti-rust fnish; 8/- esch, post plidis.e. for quotstion other sizes.-Noller,
 R 465, K.O.8., Iron cored, $16 /$ - pair: serial snd h.f., $5 /$ - pair; new typ suppressor, $6 /-$ snd h.f., 5/- pair; ne\% tFpe sappressor, 6/-; dd 9d. for posisere.-Russells, 22a, Palmer. add gd. Oor postege.-Russells, 22象, Palmer. CONDENSERS, electrolytic, 4 mfd 13860 CONDENSER8, electrolytic, 4mid Microeach: ditto tubular, $7 / 6 ; 8 \times 16$, with clip. 10/6; 8mid paper meta can, ides for am Clif tiber, 6 : $63 /$ volts working: ECR30 and h.f. coils, $7 / 6$ pair, still svailable B.V.A. and h.i. coils, $7 / 6$ pair, still available B.V.A.
valves; send ld stmmp for list of surplus radio and P.A. equipment.-Gregory, If inn radio and P.A. equipment.-Gregory, Ininn
St. Clieddar. COTTON.COVERED copper instrament wire. 28 gauges, $1 / 9 ; 30,32 \mathrm{~g}, 24,{ }^{2} 34 \mathrm{~g}, 2 / 30^{\circ}$. 1 ll 28 gauges, 1/9; 30 , $32 \mathrm{~g}, 2 /-; 3482 / 3$; silk $32,34,36 \mathrm{~g}, 1 / 9 ; 42 \mathrm{~g}, 2 /-; 16 \mathrm{~g}$ double silk 11b, 5/-; B.A. thread screws. 1 gross uselul sizes, $2 / 6$; ditto, nuts, $2 / 6$ gross; assorted gross screws and nuts, $2 / 6$; ditto, brasis washers screws and fibse washers, $1 / 6 \mathrm{gr}$; ssesorted 1/6 gross; fibre washers, $1 / 6$ gr; sistorted solder tass, 2/-gr; assorted amall ofelets and rivets, $1 / 3 \mathrm{gr}$; rubber-covered stranded copper wire, 1 d gard; heaver quality, $1 / 4 \mathrm{~d}$. yd; very hespy quality, 24 dd . Jd; idesl for serisls, 20ft coil 6d: ditto copper connecting wire $201 t$ coll, 6d., ditto, rubber covered, 1014 6d. finesf quality push-back wire, 12 yards, $2 / 3$ single cotton-covered tinned copper wire, 25g, 12 Fards, 9d; 50 Fds, 3/-; twin bell wire. 12 yds, 1/9: heavier quality, 12 yds, $2 / 3$; flat rubber-covered ditto, 3 d . yard: twin fat braided electrio cable, 6d. yard: all postage
extre. Poat Radio Supplies, 33, Bourne Giar-extri.-Post Radio Supplies, 33, Bourne Gar dens, London, E. 4.

WANTED, EXCHANQE, ETC.
WTD., cone ransed Mezds eo/BP1,-Meeson, TTü Corner Hoone, Ulienthorpe, Ragby. $\mathrm{V}^{\text {TD., }}$ in calded exponential horn, 1 in throst. WTTD., quality. tuner unit for use with NEON transtormer Warwick AFo., Crosby. 1 tails to Vane, 23, Cres-, Ilminiter, Bom. WTD., rotsry convertor, 230 do to sc , outCres put abt. 250 mA .-Warner, 15, Cobbles VTANTED, 20w amplifier, ac mains, com V plete with loud speskeri and microphone. Write Box 3514. WTD., "ew. 70L."GT good cond.-R. V. Goode 4. Clifton, York. M pidd.-Williams, Birchington Fisll, Kil burn. Tol. Mai. 1164. [3809 WTANTED, d.c. mains sets and Falves. Rd., Bow, London, E.3. [3642 RADIOGRAM cibinet, modern style, pref aod price for pisht rticle-Box 3504 [3637 TARTLEY-TURNER p.m. speaker, in good HARTLEY-TURNER p.m. spesker, in good Javahaw Ar., Great Barr, B'ham, 22a. [3680 WANTED, coil winding machlnea, suto witatic paper interleaving type preferred Rd. Norton on frees partice., to 2, Cottersioe Wdis buy for cseh, new, used, radio, electri cal equipment ell types: especislly wsinted, radios, radiograms, test equipment
motors, chargers. recording gear, otc, If you notora, chargers recording gear, otc,-If you or 'phone to Univeraity Radio. I.ti., 22. Lisle or phone to University Rsdio. Licd., 28 .

REPAIRS AND SERVICE
BEST quality rewind in 24 hre.; guaranteed B competitive.- ikediowinds, Brundall, Nik R EWINDS and converions to mains and -N. output transformers, felds. etc., from $4 / 6$.
METROPOLITAN RADIU SERVICE CO. 1 tor guaranteed repaire to Britiah and American receivers of all types-(Service nept.) 1021, Finchley Rd., N.W.11 be undertaken by RADIO repairs can now be undertaken by modern lsboratory. Sinclair Speakers. 12 , Pembroke St., Iondon, N.1. [3616 IRADIO repairs quickly executed to all sible prices.-The Music Box, 89, Lonilon tel. Lordon, S.E.1. ('lel. Waterloo 4460 gnd 6766 .) MAINS transformers rowound abd con livery,-Brown, 3. Bede Burn Rd., Jsrrow. [\$460 A LL types of radio receivers serviced A Murphy and Pilot specimlist; valven in stock: sound repairs for 13 years.-T. E. Fevyer, F.I.P.R.E., 50, Vine 8t. Uzbridge.

PHOTO-ELECTRIC CELLS

Se/Te on sold-alloy, super-sensitive to light, ges-flled, permanent, operate reley direct or with Valve Amplifier, perfect reproduction of Speech and Music from sound track of films; large tube 3 tin. from slass top to valve pin base, lin. diam., 38/same type, 2 ifin. lons, $35 /-$; small tube $2 i n$ rom top to terminal base, tin. diam., 30/= fminiature ceil, glass top to cap base, lin overall, tin. diam. thin flex leads, 28/= all cells operate on $40-100$ volts. Connections diagrams free.
PRECISION OPTICAL SYSTEM, producing fine knife adge line of light from any car headight buib, for scanning film sound track direct into Photo-cell, metel tube $2 i n$. Jong, fin. diam. i in. focus, 52/-. Instructions free. Goods by return.
CEFA IN8TRUMENT8, 3\&, York stroct, TWICKENHAM, MWY.

POPegrove 6597

TRANSFORMERS-QUALITY RADIO \& AMPLIFIERS. WEST ST. FARNHAM. SURREY

ROTHERMEL CORPORATION LTD

re now able to aupply thelr well-inown ${ }^{\text {TPIeso }}$ Crysta Productions, Incloding :-
PICK-UPS, MICROPHONES, HEADPHONES, NEEDLE PRESSURE UNITS. Descriptive leaflets and prices on application. ROTHERMEL HOUSE, CANTRRBURY

ROAD, LONDON, N.W.6.

Radio Servicemen

Ho would you Inke (b) to rewty a monthly ration of 12 alcotrolytias f (b) to be thle to lorrow reveiver sarvice mbeets P (o) to bo ablo to got pratically may
 only $7 / 8$ yearly. One condition only: yen spust le rgning a regular mare of full-time ralio ropair cerries. Write enoloctos $7 / 6$ reguentis to be resde member of V.E.s.
V. E.S. (W), Radio Houre, Ruielip, Middx

SOUND EQUIPMENT real Sales with Service

Pepsonal monsulation and adulee is frealy given on the cembination of equlpment best sulted to your particular need. Any make demonstrated without obligation.
slockists of VITAVOX High Quality Equlpment.

MONDEN PARK BOUND BTUDIOS London hoad - Morton - Burray

During the last six years "Lockwood" craftsmanship has been devoted to the design and manufacture of many hundreds of intricate wood dies used in the pressing of Thermoplastic (Perspex), Cupolas, Fairings, Turrets, etc., -for Aircraft.
(I) Weighing up to \ddagger of a ton and hand worked to very fine limits, the knowledge and experience gained by us in this field will benefit you when once again we can manufacture Furniture and Cabinetwork for your peacetime requirements.
4. In No. 4 of this series we shall give the names of famous Aircraft for which we have executed this type of work.

LOCKWOOD \& COMPANY HARROW, MIDDX.
 BYRON 3704

Just Out!

an experimental course IN THE

FUNDAMENTAL PRINCIPLES OF RADIO
By R. H. Humphry, M.Sc., F.Inst.P. A laboratory course designed for those who have little or no knowledge of electricity and magnetism. The fundamental principles of the subject are dealt with, and a statement of the theory underlying each experiment, or group of experiments, is given in a concise form.

12s. 6d. net

CATHODE RAY OSCILLOGRAPHS
 By J. H. Reyner, B.Sc.(Hons.),
 A.C.G.I., A.M.I.E.E., etc.

An easily understood guide to the practical application of Cathode Ray Tubes to numerous purposes, including the examination of oscillations, or wave forms. Second edition.

8s. 6d. net
PITMAN
PTYMAN HOUBL, PAREER ET., EDMGWAT, W.c.e
 any type, competitive grices snd prompt ser-vice--Sturdy Electric Co., L.td., Diptod, New.
castle-upon'Tvae. castle-upon Tvne.
EERVICE with a Smile."-Repairers of all coil rewinds; American valres, spares, line coil rewinds; American valres, spares, line
cord.-F.I., Litd., 22, Howland gt., W.1.
 TRANSFORMER rewinds, special designs manufactured, all types fields, chokes, outputs, otc., rewound; moderate charges, quick delivery, guaranteed high-clase work; trade obly,-H. W. Forrest, 67 , Burman Rd, Shir ley. Birmingham. Shi. 2483. Eift. 1922. [3652 24 -HOUR service, 6 months' guarantee, and ifsy transformer rewind, mains, outputs and i.f.s, etc, all types of new equipment sup plied to specification; business heading or ser-
vice card for trade prices.- Majestlo Winding Co., 180, Windhem Rd., Bournemouth. [3592 REWINDS, mains transformers, fleld colls, delivery, hew high-grado workmanihip, 7 -asy denvery; new transformars constructed to cus--Metropolitan Radio gervice Co. 1021 . Finch. ley Rd., N.W.11. Speedwell 3000 .
[3719 TEWINDS, mainstranslormers, layer wound mers, wax impregnated, chokes, O/P transfor mers, clock coils, field coils, pick-ups, complote repairs, competitive prices, prompt service, 12 months guarantee; trade querien invited. W. Groves, Manufacturing Electrical Engineers 154, lckneild Port Rd., Birmingham, 16.
$T 0$ radio dealers and service engineers only. materials Itoupplied; repaired quickly, or materials *supplied; also big stocks of all components: send your trade card or hillhead
and id. stamp for our current lista. W. F. and 1 d. stamp for our current listi-A. W. F
Radio Products, Boroush Mills, Sharpo gt Bradford, Yorks. (3410
DEGALIIER'S, Ltd. - "Service with a D guarantee. If you cannot got your receiver serviced, let American specialiste do
the job; first-class workmanship only; apecial the job; first-class workmanship only; apecial ising in Air-Kins, Belmont, Challenger, Det-
rola, deWald, Emerson, Fercuson, Gerod rola dellald, Emerson, Ferguson, Garod, Hallicrafter, llammerlund, McMurdo, Med West Majestic, Plot, Philco, Sparton, etc., also any British set. Remember, for 15 years we have handled as distributora Amorlan recoivers s.e.t with all onquiries.-Degallie MI8CELLANEOUS
TIME recorder..-Writo for particulara.G Gledhill-Brook Time Recorders, Ltd. 84 , Erapire Works, Iludderitield. \quad [2419 BUSINESS for sile, radio, elec., etc., Surrey; profits £12 p.w.; 2750 s.e.v.-Bugi-
ness Brokers, 46, St. Jsmes's Pl., S.W.1. [3601 FXPERIENCED amateur with capital B wishes to actively join with proprietor of an existing radio business.-Box 3494. [3600 (provide complete constructional detalls together with full-size prints, etc., of tested end gosranteed designs.
MIDGET two valver, all dry batteries, 9 volt ht, med. weve, poweriul phone sigs., size $51 / 2 \times 51 / 2 \times 31 / 2 i n$, ideal set, travellern, etc., 2/6; AC It charger, 2 or 6 volt, 2/6; do lt charger, 2/-; transverse current microphone, 2/6; pa anplifiers and other designs in hand. SPARKS' DATA SHEETG (W'.), 9, Pheobeth Rd., Brockley. London, S.E.4. [3622 (Y. L. BROWN, Eng, Designer.-Design. mechanjcal apparatus and small mechanisins -6. Glenby Ave., Gt. Urosby, Iiverpool, 23 . (YHAsgIg, brackots. clamps, shrouds, tinish in A A benders minish in A.A. benders, used hy farke radio fiull detail irec to experimental engineers.Full detais froe Irom A. A. Lools, 197a, White cro itd., Ashton-u.-Lyne

3770 TOR eale.-Bucks, 1 hr. Baker 8t.: freehold tricsl detached house, 2 shops, one radio, electricsl, cycles, toys. the other ladies hairdressing saloon (lock-up); licence held for all electrical installations in district; garden, garage, telephone; disposal through illness;
sll st 3,000 - Boz 3502 sll at $£ 3,000 .-B 0 \geq 3502$.

SITUATIONS VACANT
A WELL-KNOWN and longestahlished quires a chiol mechanical engineer; excellent opportunity for a men with good qualifications and experience in mechanical deaign; appointment when present restrictions of employment are withdrawa.-Box 3485. 【3933 D RAUGH'HMAN (junior) required hy progresive radio and electrical manufac-
turers; opportunity afforded to introduce originality in design; sppointment when reatrictions of employment are withdrewn; excollent prospect for young men.-Full per. tioulers, ege ad salery to Boz 3492 . [3598

BONOON CENTRAR RADIO STDRES

WIREWOUND POTENTIOMETERS. 4,000 whms. Open type on porcelsin formers, 9 1ti spindle,
$2 t \times 1 \mathrm{~m}$. $12 / 6$. 26,000 ohms. Tropical lype en. closed in hakelite mouiding, fin.spindle, $1 / \times \frac{1}{} \mathrm{im} .4 / 6$. SPEAKRR8. Goodmans sylit. P.M. 3.2 ohms epeech coil, less transformer. 27/6. Goodmans 12in
P.M. 15 ohm V. coll. 8618 . Carr., etc., $4 / 6$ extra R. \& A. 8 in. maina euergised alth Pentode output transformer, 1,200 ohm field. 37/6. Celeation 10 in . P.M. with transfurmer. 45/-

Celention 6in. P.M. with trateformer. 27/6,
EXTEMEION BPEAEERS, in Rexive covered Cmbluets 6 ln . Rola. $32 / 6$.
SLIDING REgIgTANCEs. 1.100 ohme 0.4 amp. wire. wound on twin porcelalu formers. A firut-clam
engineering job. $32 / 6$.
D.C. MOVIMA COIL MILLIAMMETEBS with 2ha clear reading dialo, thush mountiug. 0-1 ma. Ful ecale deffection. 47/6. 0-25 m2A. 2in. dial. Fluah mountiag, bakelite case. Made by Erneat Turner Flectrical Instruments I.td., $\overline{50 /=} \quad 0-6 \mathrm{~mA}$. 2 tm . dial. Flush mounting, bakelite case. Kistra scalem for con. Intarnal resiet 50, 50/
MrCROAMMETER, $0-500,2 \mathrm{in}$. dial. Mubh mountling, bakelite case, $\$ 410 \mathrm{~s}$.
. 1 mild. TUBULAR CONDEREERS 5,000v. DC wkg 5/6 TWO-RANGE D.C. VOLTMETERS. Moviag coll $0-300$, U-600 v Cumpleto with shunt. \%its. cleas reading dian. Flush mountiag Made by Ernent THI
TWIN CARBON POTEMTIOMETERS, 0.5 megohm $8 / 6$.
MAINS TRAMgFORMRRS. Newly manufactured. $250-0-250$ v. 80 mA is. $3 \mathrm{a} . \mathrm{m}^{2} \mathrm{v}^{3} \mathrm{~s}^{3} .28 .6$. $300-0-300$ v. 75 mA . 6.8 v. and 5 v. $28 / 6$.
4 mid. COMDEMSERS, 250 マ. D.C. wikg., size $3 / \times 2 \times 2$.
MIDGET POT'METRRS. Wirewound, 8 ohms. 4/6.
COHDENSERS. Metal cased. 0.1 ufd., $1,000 \mathrm{r}$ D.O.W. Inaulated terminals. $21 \times 2 \times 1$ is. $3 / 6$.

TUBULAE COMDENSEZE. 0.1 mid., 380 v. D.C.W, Bakelite with metal-ends. Tag terminals. $1 / 6$.
YAXLEI TYPE METER 8WITCR. Sln 10 Epole 11-พау. $8 / 6$.
"MUTER " PUBE-BUTTON UNITM. 8-way, with mainm erfitch rated 126 v . at 0.8 amp . and 280 v . at 1 amp. 3/6.
EX-G.P.O. ELECTRO-MAGNETIC COUNTERS, $25-50$ v. D.C. Courting to 9,949 . 6/-
PLATHUM OONTAOTS. Double apring, mounted on eboalte. 1/6.
MULLARD EASO VALVEs. $10 / 6$.
CHASsIS $11 \times 9 t \times 2$ inn. $3 / 6$.
A PARCEL OF CONDENSERS containitg 4 esch Tabular . 1, .01, .001, .005, .0003, .0005, .0064. .004, $0025,002 \mathrm{mid}$. 1 each Electrolytis 8 mid., $8 \times 8 \mathrm{mid}$. 16 mid. 450 v. whg. $\dot{l}^{-1}+.1+.1$ mid. 850 ₹. wkg.

Closed Thursdays, 1 p.m.
 Open all day Saturdays

23, ㄴISㄴㅌ STREET
 LONDON GERrard 2969 W.C.2.

$\mathbf{R}^{\text {ADIO }}$ Ezporartory ongineer, with prectical
 meazurementis, oiltered permannent poit with meod prospectit over 51 or Clasi A ex-Serice man. - Box 3516 .
CBARGE hands required for redio and/or C electrical Instrument ser Floing; class A Servicemen or men over 51 ; must be experi enced, not tiraid of work, conversent with modern mothods; good wages and perman ency.-Box 3500 .
[3629 A CTIVE psrtnership, with option of even. established frat (messuring instruments) bout $\& 1,000$; offers intaresting work, and secure future to keen teohnician; banker's re lerence.-Box 3508. IVM redio service engineers fanted imme diatoly, accuttomed to fiult flnding, checking testing, etc.; good wages; Blough distriot: permanent posj of suitable men, over 51 or Class A ox-pervicemen; unlest fully qualified do not write.-Box 3515 . [3670 CALSS representitive required to call upon mennfaoturera of radio receiving and transmitting epparatus and oleotronio oquipmont throughout the country; pplicstions in vited from class A Qervicemen; salary pocord inf to ase ad experience.-Apply to Persoz nol Ofloer, Box 3501 .
DERRY's (8HORT
[3633 BERRY's (BHORT WAVE), Ltd.
vacancios for men experienced in (s) communicstion recelvers, (b) trinsmitters, (c) transmitting velves; applicstions invited from olass A Servicemen and men over 51.-Full detsils of experience snd past positions to
25, High Holborn, London, W.C.1. [3688 A BSIBTANT required in Central London to A undertake Iull-time Instruction work in tele-communications, principally broedessting and redio-tolephony; previout tecohing exper ence not aseatis.-Write, steting sge, experience, and selary required, to Box M.453, Will.
ings 362 , Gray's Inn Rd. W.O.1. R ADIO eagineer required for development ark by small esteblished manuiecturer good theorotiosl knowledgo moro essentia post for young man (25-35) with initistive and adaptability; sppointment when relevant restrictions on employment gre withdrevn. Full verticulers, are and salary to Box 3493 VERSEAB employment.-Brosdcset officer Brondcesting Department for one tour of 12 to 24 months, with possible permenency alary 8450 , rifing to e720 a year, plus local allowance of 248 and separation allowance for married men betweeu s84 and E204, according to number of children; outfit sllowaccording to number of children; outfit sllowdidstes ahould be of sood education and besve had a thorougb training in the theory bend operation of Wireless brosdenst trensmitters and in tudio technique; should understend thoroughly the systom of distributing redio programmes by wire, and have a knowledge of modern superheterodyne short-wave re. colvers; a knowledge of gramophone disc re. cording is desirable.
stating dete of birtich must be in writing cations and apprien, full detsils of qualia ployment; also identity and National Service or other reßistration particulars, and quoting Reference No. 0.8 . 875, should be eddressed to the Ministry of Labour and National Sor. vice, Appointments Depertment, Sardinia St. Kingsway, London, W.C.2.

8ITUATION8 WANTED
©ERVICE engineer, 39, eeks position as outN side representstive; 20 yenrs experience; RADIO engineer, 10 yearm civilian experiradio ence. desires partnership or position in sidered: driver, rolese group 19.-Boz 3513 . TMX, RX, and plastics, Toat engineer, age 40, charge wiring present laboratory, previounty in practical and und to sil modern tet gesel practical and used to all modern test Eear.-
Box 3518 . RADIO engineer, over 20 years exp., work, requires progressive and remunierative position. Oflers to Box 3499
R.A.F. omoer, 28. edepteble, berd worker 1. bomber pilot with experience on single-twin- and fourengined arcraft, now studying redio engineering, desires post-wer situstion, oither sir or ground, preferably with frm engaged on radio
search. - Boz 3485

TUITION
[3602
R A DIO training.-P.M.G. orsme and I.E.E. College, Hull. [0611

HILL \& CHURCHILL bookselens SWANAGE DORSET

ENGLISH \& AMERICAN BOOKS IN STOCK ON RADIO AND TELECOMMUNICATION

CATALOGUE ON APPLICATION

REWINDS

Armatures, Fields, Transformers, Pickups, Fractional H.P. Motors. Speakers Refitted New Cones Speech Coils. All Guaranteed and promptly executed. Yasoe. B.V.A. and Americen, good mocks. Send thampod addressed envelope tor hiat of Eadio spares.

- \rightarrow 2 $1-3-5$
A. 1.C. FB. 281-3-5, Lichatd Road,
 ridged for strength. Teeth on anecial desien of upper law ensure firm grip and good

Wingard

CHURCH ROAD • MENDON-LONDON •N.W. 4

TRANSFORMERS \& COILS

 TO SPECIFICATION.MANUFACTURED OR REWOUND.
8TANLEY OATTELE LTD., 9-11. East Street, TORQUAY, Devon. Phone: Topguat 2102.

COVENTRY

Component Specialists since 1925
 $250 \mathrm{v} .$, secondary $850-0-850$ volt, 80 ma , 8.3 v .
 Mult-Ratio, 8/9. Tapped Powar/Puntode....... VOLUNE CONTBOLS, wh B.P. IFAtch, Ist Grade, delres trom 1,000 ohm to 2 mecohm
-GAFG COMDTM日EPA, . 0005 mid., bent quaiks. With Axing feet, Jo epindle

8in. 2,000 ohm beld,
whitandard tome $36 / \mathrm{ln}$
 Colle and Dorens of other Components.
PROMPT BERYICE, CONPLETE 8ATI8PACTION NOTR. We close trom Augant 5 th to 10 th .
THE CONENTRM co.
191, DUN8TABLE ROAD, LUTON.

M ATHEMATICB.-Expert personal poshal Prospeotus and advice free from 8.T.T.O., 8 Ascupart Hone Portswood, Bouthampton. " FNGINEDRNiNG Opportunitias." - froe A.M.I.Mech.E., A.MI.E.E. and all branches of engineerin: and bullding; full of advice for expert or novice; write for free copy and make your peacetime futuro seoure.-B.I.E.T. (Dept. 387B). 17, Etratiord Plece, London, W.1.

TECHNICAL TRAIHINO
.M.I.E.E, City, and Guilds. elc., on " No A. pass-no fee "terms; ove: 90% successes. For full details of modern courses in all branohes of oloctrical technology send for our 112-page handbook free, poti iree.-B.
CREAT posaibilities exist for technically and qualified ongineers, key men in wartime and afterwardi. courses of The T.I.G.B. takh the recognised engicourses of The T.I.G.B. tare a recog.I.Mech.E. A.M.I.E. qualifers. A.F.Ae.S. A.M.I.Chem.E. C. and G., otc. in which eraminations the T.1.G.B. studente have pased and handreds of passes. Write toPLay for ${ }^{\text {P. The Engiveer's Guide to Success " }}$ -free-containing ine wordin all engineering conrses coveringanical, olectrical, wireless, chomical, to. GT. BRITAIN, 82, Temple Bar Houne, E.C.4. PATENT MOTIGES
R ADIO-electrio patents.-Well-known Lon-- don redio component manulacturer are onen to consider pacs or che Alfred Hates war period.- 130 Flogress, c/o Alired bica \& bon, Lid., 130, No THE proprietors of Brition Patent in and relating to cathode-ray tuber, offor seme for licence or otherwise to ensare its praoncal working in Great Britsin.-Inquiries to gilding Ehlert ${ }^{\text {Storn }}$ and Cariberg, Chrysier Build
Now
[3596 Now York proprietori of British Patent No. 1 504934, entitled Improvemante in Clo sures for Evacuatod Envolopes and Mothou o Manulacturing the game, offers mame for ioange or otherwiso to ensure its practica working in Great Britain.-Inquiriee to singer Ehlert, Etern and Carlberg. Chrysier Building New York Olty 17, N.Y. U.S.A. Patent No. 388 1-537689, entitled Improvements in weve signalling systems, particularly applicable to factimile telegraphy, and No. 537699 , entitio Improvements in frequency modulation sys tems, oller same for hicense or otherwisg to ensure their practical working in Gres Britain.-Inquiries to Singer, Ehlert, Stern and Carlbers, Chrysler Building, Now York [3627
U.S.A. 17. N.Y., U.8.A.

WORK WAMTED.

DESIGN end development.
WE have facilitios particularly suited to this class of work; A.I.D, approved; enquiriee to:GREEN ELECTRICAL CINDOS Tel. 7417-8. 44-45. Tamworth Rd., Croydon. Tel. $7417-8$. CoIL winding, vacuum-pressure impregnal Norfolk Tel. 90. in 13604 SHEET metal and engineering Co. in London D area have immediate capacity for shat of workmanghip guaranteed.-Ápply Box 3498 CAPACITY available for complete manulac Cuture of all types of radio and slectrica equipment; Fave winding, coll and transiormer winding, Fith vacuum impresnation, Ministry super tropical standards: AD.D. approved. GREEN ELECTRICAL INDURTRIES, Litd. 44-45. Tamworth Rd. Tel Croydon ${ }^{7417-8 .}$ 1 Lid., $233-235$, Lawiehem High 8t., London, S.E. 13 , wish to supplement present pro duction by the manufacture of new types of radio or other domestic electrical producta cepacity te also available for coll and trans former winding to specification; the repair of all types of British and Amorionn recoiving equipment can be undertaken on behall of the trade; hish grade workmanship and quick delivery guarantoed. COPIES " Modern Wireleas,"' Fob., '41, to " TTIRELEAS World ${ }^{\circ}$ 1929 359 . WIRELESS World," 1929 , 0 1936. excep sineer. ${ }^{18}$ 1932-35.-BM/MB6F, 'London W C WIRELESS World." 1933-39, 270 copiee bound. borough, Loics.

[^0]: Books issued in conjunction with "Wireless World"
 FOUNDATIONS OF WIRELESS. Fourth Edition, by M. G. Price Post
 $\begin{array}{cccccc}\text { FOUNDATIONS OF WIRELESS. Fourth Edition, by M. G. } \\ \text { Scroggle ... } & \text {... } \ldots . . . & \ldots & \ldots & \ldots\end{array}$

 RADJO LABORATORY EQUIPMENT, by W. T. Cocking 10/6 10/10
 RAND
 Second Labition SIRELESS SERVIGING MANUAL, by w. T. Cocking. SIxth Edition
 HANDBOOK OF TECHNICAL INSTRUCTION FOR WIRELESS \quad 7/6 \quad 7/10
 TELEGRAPHISTS, by H. M. Dowsett and L. E. Q. Walker.

 RADIO DATA CHARTS. Third Edition, Revised by J. McG. Sowerby, B.A., Grad. I.E.E. RADIO INTERFERENCE SUPPRESSION, by G. W. Ingram ... LEARNING MORSE. 335th thousand
 6d. 71d.
 RADIO WAVES AND THEIONOSPHERE, by T. W. Bennington $6 /-\quad$... $6 / 3$
 Obtainable from leading booksellers or by post from
 ILIFFE \& SONS LTD., Dorset House, Stamford Street, London, S.E.I

[^1]: * "Sample," as used here, is a technical term. It is defined in BS600R: 1942, as "A portion of material or a group of individuals or specimens taken from a large mass or bulk which is used to give information as to the quality of the larger quantity."

[^2]: The British abstracts published here are prepared with the permission of the Controller of H.M. Stationery Offce, from specifications obtainable at the Patent Ofice, 25. Southampton Buildinge, London, W.C.2, price 1/- ench.

[^3]: ARMSTRONG
 WiRELEst
 TELEVISION WARLTERS RQAD，HOLLOWAY，LONDON，N． 7

